Cargando…

3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy

Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-de...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarker, Sunandita, Colton, Adira, Wen, Ziteng, Xu, Xin, Erdi, Metecan, Jones, Anthony, Kofinas, Peter, Tubaldi, Eleonora, Walczak, Piotr, Janowski, Miroslaw, Liang, Yajie, Sochol, Ryan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104452/
https://www.ncbi.nlm.nih.gov/pubmed/37064271
http://dx.doi.org/10.1002/admt.202201641
_version_ 1785026039807737856
author Sarker, Sunandita
Colton, Adira
Wen, Ziteng
Xu, Xin
Erdi, Metecan
Jones, Anthony
Kofinas, Peter
Tubaldi, Eleonora
Walczak, Piotr
Janowski, Miroslaw
Liang, Yajie
Sochol, Ryan D.
author_facet Sarker, Sunandita
Colton, Adira
Wen, Ziteng
Xu, Xin
Erdi, Metecan
Jones, Anthony
Kofinas, Peter
Tubaldi, Eleonora
Walczak, Piotr
Janowski, Miroslaw
Liang, Yajie
Sochol, Ryan D.
author_sort Sarker, Sunandita
collection PubMed
description Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with “ex situ direct laser writing (esDLW)” is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles—with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing—directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
format Online
Article
Text
id pubmed-10104452
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-101044522023-04-14 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy Sarker, Sunandita Colton, Adira Wen, Ziteng Xu, Xin Erdi, Metecan Jones, Anthony Kofinas, Peter Tubaldi, Eleonora Walczak, Piotr Janowski, Miroslaw Liang, Yajie Sochol, Ryan D. Adv Mater Technol Article Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with “ex situ direct laser writing (esDLW)” is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles—with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing—directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications. 2023-03-10 2023-02-05 /pmc/articles/PMC10104452/ /pubmed/37064271 http://dx.doi.org/10.1002/admt.202201641 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Article
Sarker, Sunandita
Colton, Adira
Wen, Ziteng
Xu, Xin
Erdi, Metecan
Jones, Anthony
Kofinas, Peter
Tubaldi, Eleonora
Walczak, Piotr
Janowski, Miroslaw
Liang, Yajie
Sochol, Ryan D.
3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy
title 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy
title_full 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy
title_fullStr 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy
title_full_unstemmed 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy
title_short 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy
title_sort 3d-printed microinjection needle arrays via a hybrid dlp-direct laser writing strategy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104452/
https://www.ncbi.nlm.nih.gov/pubmed/37064271
http://dx.doi.org/10.1002/admt.202201641
work_keys_str_mv AT sarkersunandita 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT coltonadira 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT wenziteng 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT xuxin 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT erdimetecan 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT jonesanthony 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT kofinaspeter 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT tubaldieleonora 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT walczakpiotr 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT janowskimiroslaw 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT liangyajie 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy
AT socholryand 3dprintedmicroinjectionneedlearraysviaahybriddlpdirectlaserwritingstrategy