Cargando…

Hot carrier extraction from 2D semiconductor photoelectrodes

Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, “cool” carriers, but current strategies require expensive multijunction architectures. Using an unprece...

Descripción completa

Detalles Bibliográficos
Autores principales: Austin, Rachelle, Farah, Yusef R., Sayer, Thomas, Luther, Bradley M., Montoya-Castillo, Andrés, Krummel, Amber T., Sambur, Justin B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104502/
https://www.ncbi.nlm.nih.gov/pubmed/37011201
http://dx.doi.org/10.1073/pnas.2220333120
_version_ 1785026052533256192
author Austin, Rachelle
Farah, Yusef R.
Sayer, Thomas
Luther, Bradley M.
Montoya-Castillo, Andrés
Krummel, Amber T.
Sambur, Justin B.
author_facet Austin, Rachelle
Farah, Yusef R.
Sayer, Thomas
Luther, Bradley M.
Montoya-Castillo, Andrés
Krummel, Amber T.
Sambur, Justin B.
author_sort Austin, Rachelle
collection PubMed
description Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, “cool” carriers, but current strategies require expensive multijunction architectures. Using an unprecedented combination of photoelectrochemical and in situ transient absorption spectroscopy measurements, we demonstrate ultrafast (<50 fs) hot exciton and free carrier extraction under applied bias in a proof-of-concept photoelectrochemical solar cell made from earth-abundant and potentially inexpensive monolayer (ML) MoS(2). Our approach facilitates ultrathin 7 Å charge transport distances over 1 cm(2) areas by intimately coupling ML-MoS(2) to an electron-selective solid contact and a hole-selective electrolyte contact. Our theoretical investigations of the spatial distribution of exciton states suggest greater electronic coupling between hot exciton states located on peripheral S atoms and neighboring contacts likely facilitates ultrafast charge transfer. Our work delineates future two-dimensional (2D) semiconductor design strategies for practical implementation in ultrathin photovoltaic and solar fuel applications.
format Online
Article
Text
id pubmed-10104502
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101045022023-10-03 Hot carrier extraction from 2D semiconductor photoelectrodes Austin, Rachelle Farah, Yusef R. Sayer, Thomas Luther, Bradley M. Montoya-Castillo, Andrés Krummel, Amber T. Sambur, Justin B. Proc Natl Acad Sci U S A Physical Sciences Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, “cool” carriers, but current strategies require expensive multijunction architectures. Using an unprecedented combination of photoelectrochemical and in situ transient absorption spectroscopy measurements, we demonstrate ultrafast (<50 fs) hot exciton and free carrier extraction under applied bias in a proof-of-concept photoelectrochemical solar cell made from earth-abundant and potentially inexpensive monolayer (ML) MoS(2). Our approach facilitates ultrathin 7 Å charge transport distances over 1 cm(2) areas by intimately coupling ML-MoS(2) to an electron-selective solid contact and a hole-selective electrolyte contact. Our theoretical investigations of the spatial distribution of exciton states suggest greater electronic coupling between hot exciton states located on peripheral S atoms and neighboring contacts likely facilitates ultrafast charge transfer. Our work delineates future two-dimensional (2D) semiconductor design strategies for practical implementation in ultrathin photovoltaic and solar fuel applications. National Academy of Sciences 2023-04-03 2023-04-11 /pmc/articles/PMC10104502/ /pubmed/37011201 http://dx.doi.org/10.1073/pnas.2220333120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Austin, Rachelle
Farah, Yusef R.
Sayer, Thomas
Luther, Bradley M.
Montoya-Castillo, Andrés
Krummel, Amber T.
Sambur, Justin B.
Hot carrier extraction from 2D semiconductor photoelectrodes
title Hot carrier extraction from 2D semiconductor photoelectrodes
title_full Hot carrier extraction from 2D semiconductor photoelectrodes
title_fullStr Hot carrier extraction from 2D semiconductor photoelectrodes
title_full_unstemmed Hot carrier extraction from 2D semiconductor photoelectrodes
title_short Hot carrier extraction from 2D semiconductor photoelectrodes
title_sort hot carrier extraction from 2d semiconductor photoelectrodes
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104502/
https://www.ncbi.nlm.nih.gov/pubmed/37011201
http://dx.doi.org/10.1073/pnas.2220333120
work_keys_str_mv AT austinrachelle hotcarrierextractionfrom2dsemiconductorphotoelectrodes
AT farahyusefr hotcarrierextractionfrom2dsemiconductorphotoelectrodes
AT sayerthomas hotcarrierextractionfrom2dsemiconductorphotoelectrodes
AT lutherbradleym hotcarrierextractionfrom2dsemiconductorphotoelectrodes
AT montoyacastilloandres hotcarrierextractionfrom2dsemiconductorphotoelectrodes
AT krummelambert hotcarrierextractionfrom2dsemiconductorphotoelectrodes
AT samburjustinb hotcarrierextractionfrom2dsemiconductorphotoelectrodes