Cargando…

Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries

Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li(+) conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li(+) behaviors at the interfaces. Herein...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yanfei, Zhang, Qi, Zheng, Yun, Li, Gaoran, Gao, Rui, Piao, Zhihong, Luo, Dan, Gao, Run-Hua, Zhang, Mengtian, Xiao, Xiao, Li, Chuang, Lao, Zhoujie, Wang, Jian, Chen, Zhongwei, Zhou, Guangmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104547/
https://www.ncbi.nlm.nih.gov/pubmed/37018192
http://dx.doi.org/10.1073/pnas.2300197120
_version_ 1785026062477950976
author Zhu, Yanfei
Zhang, Qi
Zheng, Yun
Li, Gaoran
Gao, Rui
Piao, Zhihong
Luo, Dan
Gao, Run-Hua
Zhang, Mengtian
Xiao, Xiao
Li, Chuang
Lao, Zhoujie
Wang, Jian
Chen, Zhongwei
Zhou, Guangmin
author_facet Zhu, Yanfei
Zhang, Qi
Zheng, Yun
Li, Gaoran
Gao, Rui
Piao, Zhihong
Luo, Dan
Gao, Run-Hua
Zhang, Mengtian
Xiao, Xiao
Li, Chuang
Lao, Zhoujie
Wang, Jian
Chen, Zhongwei
Zhou, Guangmin
author_sort Zhu, Yanfei
collection PubMed
description Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li(+) conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li(+) behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li(+) conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li(+) conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co–O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li(+) disassociation and enhances its transference number (t(Li)(+)). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm(−1) and t(Li)(+) of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium–sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries.
format Online
Article
Text
id pubmed-10104547
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-101045472023-10-05 Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries Zhu, Yanfei Zhang, Qi Zheng, Yun Li, Gaoran Gao, Rui Piao, Zhihong Luo, Dan Gao, Run-Hua Zhang, Mengtian Xiao, Xiao Li, Chuang Lao, Zhoujie Wang, Jian Chen, Zhongwei Zhou, Guangmin Proc Natl Acad Sci U S A Physical Sciences Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li(+) conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li(+) behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li(+) conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li(+) conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co–O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li(+) disassociation and enhances its transference number (t(Li)(+)). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm(−1) and t(Li)(+) of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium–sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries. National Academy of Sciences 2023-04-05 2023-04-11 /pmc/articles/PMC10104547/ /pubmed/37018192 http://dx.doi.org/10.1073/pnas.2300197120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Zhu, Yanfei
Zhang, Qi
Zheng, Yun
Li, Gaoran
Gao, Rui
Piao, Zhihong
Luo, Dan
Gao, Run-Hua
Zhang, Mengtian
Xiao, Xiao
Li, Chuang
Lao, Zhoujie
Wang, Jian
Chen, Zhongwei
Zhou, Guangmin
Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
title Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
title_full Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
title_fullStr Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
title_full_unstemmed Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
title_short Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
title_sort uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104547/
https://www.ncbi.nlm.nih.gov/pubmed/37018192
http://dx.doi.org/10.1073/pnas.2300197120
work_keys_str_mv AT zhuyanfei uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT zhangqi uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT zhengyun uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT ligaoran uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT gaorui uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT piaozhihong uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT luodan uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT gaorunhua uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT zhangmengtian uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT xiaoxiao uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT lichuang uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT laozhoujie uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT wangjian uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT chenzhongwei uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries
AT zhouguangmin uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries