Cargando…
Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries
Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li(+) conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li(+) behaviors at the interfaces. Herein...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104547/ https://www.ncbi.nlm.nih.gov/pubmed/37018192 http://dx.doi.org/10.1073/pnas.2300197120 |
_version_ | 1785026062477950976 |
---|---|
author | Zhu, Yanfei Zhang, Qi Zheng, Yun Li, Gaoran Gao, Rui Piao, Zhihong Luo, Dan Gao, Run-Hua Zhang, Mengtian Xiao, Xiao Li, Chuang Lao, Zhoujie Wang, Jian Chen, Zhongwei Zhou, Guangmin |
author_facet | Zhu, Yanfei Zhang, Qi Zheng, Yun Li, Gaoran Gao, Rui Piao, Zhihong Luo, Dan Gao, Run-Hua Zhang, Mengtian Xiao, Xiao Li, Chuang Lao, Zhoujie Wang, Jian Chen, Zhongwei Zhou, Guangmin |
author_sort | Zhu, Yanfei |
collection | PubMed |
description | Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li(+) conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li(+) behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li(+) conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li(+) conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co–O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li(+) disassociation and enhances its transference number (t(Li)(+)). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm(−1) and t(Li)(+) of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium–sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries. |
format | Online Article Text |
id | pubmed-10104547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-101045472023-10-05 Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries Zhu, Yanfei Zhang, Qi Zheng, Yun Li, Gaoran Gao, Rui Piao, Zhihong Luo, Dan Gao, Run-Hua Zhang, Mengtian Xiao, Xiao Li, Chuang Lao, Zhoujie Wang, Jian Chen, Zhongwei Zhou, Guangmin Proc Natl Acad Sci U S A Physical Sciences Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li(+) conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li(+) behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li(+) conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li(+) conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co–O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li(+) disassociation and enhances its transference number (t(Li)(+)). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm(−1) and t(Li)(+) of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium–sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries. National Academy of Sciences 2023-04-05 2023-04-11 /pmc/articles/PMC10104547/ /pubmed/37018192 http://dx.doi.org/10.1073/pnas.2300197120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Zhu, Yanfei Zhang, Qi Zheng, Yun Li, Gaoran Gao, Rui Piao, Zhihong Luo, Dan Gao, Run-Hua Zhang, Mengtian Xiao, Xiao Li, Chuang Lao, Zhoujie Wang, Jian Chen, Zhongwei Zhou, Guangmin Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
title | Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
title_full | Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
title_fullStr | Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
title_full_unstemmed | Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
title_short | Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
title_sort | uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium–sulfur batteries |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104547/ https://www.ncbi.nlm.nih.gov/pubmed/37018192 http://dx.doi.org/10.1073/pnas.2300197120 |
work_keys_str_mv | AT zhuyanfei uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT zhangqi uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT zhengyun uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT ligaoran uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT gaorui uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT piaozhihong uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT luodan uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT gaorunhua uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT zhangmengtian uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT xiaoxiao uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT lichuang uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT laozhoujie uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT wangjian uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT chenzhongwei uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries AT zhouguangmin uncoordinatedchemistryenableshighlyconductiveandstableelectrolytefillerinterfacesforsolidstatelithiumsulfurbatteries |