Cargando…
Explainable Deep Hypergraph Learning Modeling the Peptide Secondary Structure Prediction
Accurately predicting peptide secondary structures remains a challenging task due to the lack of discriminative information in short peptides. In this study, PHAT is proposed, a deep hypergraph learning framework for the prediction of peptide secondary structures and the exploration of downstream ta...
Autores principales: | Jiang, Yi, Wang, Ruheng, Feng, Jiuxin, Jin, Junru, Liang, Sirui, Li, Zhongshen, Yu, Yingying, Ma, Anjun, Su, Ran, Zou, Quan, Ma, Qin, Wei, Leyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104664/ https://www.ncbi.nlm.nih.gov/pubmed/36794291 http://dx.doi.org/10.1002/advs.202206151 |
Ejemplares similares
-
iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations
por: Jin, Junru, et al.
Publicado: (2022) -
ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides
por: Li, Zhongshen, et al.
Publicado: (2023) -
DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis
por: Wang, Ruheng, et al.
Publicado: (2023) -
Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
por: Guo, Jin-Li, et al.
Publicado: (2016) -
Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks
por: Wang, Yu, et al.
Publicado: (2023)