Cargando…
Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
Gene expression-based recurrence assays are strongly recommended to guide the use of chemotherapy in hormone receptor-positive, HER2-negative breast cancer, but such testing is expensive, can contribute to delays in care, and may not be available in low-resource settings. Here, we describe the train...
Autores principales: | Howard, Frederick M., Dolezal, James, Kochanny, Sara, Khramtsova, Galina, Vickery, Jasmine, Srisuwananukorn, Andrew, Woodard, Anna, Chen, Nan, Nanda, Rita, Perou, Charles M., Olopade, Olufunmilayo I., Huo, Dezheng, Pearson, Alexander T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104799/ https://www.ncbi.nlm.nih.gov/pubmed/37059742 http://dx.doi.org/10.1038/s41523-023-00530-5 |
Ejemplares similares
-
The impact of site-specific digital histology signatures on deep learning model accuracy and bias
por: Howard, Frederick M., et al.
Publicado: (2021) -
Clinicopathologic Characteristics and Prognosis of ERBB2-Low Breast Cancer Among Patients in the National Cancer Database
por: Peiffer, Daniel S., et al.
Publicado: (2023) -
Identification of a circulating MicroRNA signature to distinguish recurrence in breast cancer patients
por: Huo, Dezheng, et al.
Publicado: (2016) -
Response to Treatment, Racial and Ethnic Disparity, and Survival in Patients With Breast Cancer Undergoing Neoadjuvant Chemotherapy in the US
por: Shubeck, Sarah, et al.
Publicado: (2023) -
An enhancer variant associated with breast cancer susceptibility in Black women regulates TNFSF10 expression and antitumor immunity in triple-negative breast cancer
por: Han, Yoo Jane, et al.
Publicado: (2022)