Cargando…
Temporal nanofluid environments induce prebiotic condensation in water
Water is a problem in understanding chemical evolution towards life’s origins on Earth. Although all known life is being based on water key prebiotic reactions are inhibited by it. The prebiotic plausibility of current strategies to circumvent this paradox is questionable regarding the principle tha...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104841/ https://www.ncbi.nlm.nih.gov/pubmed/37059805 http://dx.doi.org/10.1038/s42004-023-00872-y |
_version_ | 1785026122274045952 |
---|---|
author | de Herrera, Andrea Greiner Markert, Thomas Trixler, Frank |
author_facet | de Herrera, Andrea Greiner Markert, Thomas Trixler, Frank |
author_sort | de Herrera, Andrea Greiner |
collection | PubMed |
description | Water is a problem in understanding chemical evolution towards life’s origins on Earth. Although all known life is being based on water key prebiotic reactions are inhibited by it. The prebiotic plausibility of current strategies to circumvent this paradox is questionable regarding the principle that evolution builds on existing pathways. Here, we report a straightforward way to overcome the water paradox in line with evolutionary conservatism. By utilising a molecular deposition method as a physicochemical probe, we uncovered a synergy between biomolecule assembly and temporal nanofluid conditions that emerge within transient nanoconfinements of water between suspended particles. Results from fluorometry, quantitative PCR, melting curve analysis, gel electrophoresis and computational modelling reveal that such conditions induce nonenzymatic polymerisation of nucleotides and promote basic cooperation between nucleotides and amino acids for RNA formation. Aqueous particle suspensions are a geochemical ubiquitous and thus prebiotic highly plausible setting. Harnessing nanofluid conditions in this setting for prebiotic syntheses is consistent with evolutionary conservatism, as living cells also work with temporal nanoconfined water for biosynthesis. Our findings add key insights required to understand the transition from geochemistry to biochemistry and open up systematic pathways to water-based green chemistry approaches in materials science and nanotechnology. |
format | Online Article Text |
id | pubmed-10104841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101048412023-04-16 Temporal nanofluid environments induce prebiotic condensation in water de Herrera, Andrea Greiner Markert, Thomas Trixler, Frank Commun Chem Article Water is a problem in understanding chemical evolution towards life’s origins on Earth. Although all known life is being based on water key prebiotic reactions are inhibited by it. The prebiotic plausibility of current strategies to circumvent this paradox is questionable regarding the principle that evolution builds on existing pathways. Here, we report a straightforward way to overcome the water paradox in line with evolutionary conservatism. By utilising a molecular deposition method as a physicochemical probe, we uncovered a synergy between biomolecule assembly and temporal nanofluid conditions that emerge within transient nanoconfinements of water between suspended particles. Results from fluorometry, quantitative PCR, melting curve analysis, gel electrophoresis and computational modelling reveal that such conditions induce nonenzymatic polymerisation of nucleotides and promote basic cooperation between nucleotides and amino acids for RNA formation. Aqueous particle suspensions are a geochemical ubiquitous and thus prebiotic highly plausible setting. Harnessing nanofluid conditions in this setting for prebiotic syntheses is consistent with evolutionary conservatism, as living cells also work with temporal nanoconfined water for biosynthesis. Our findings add key insights required to understand the transition from geochemistry to biochemistry and open up systematic pathways to water-based green chemistry approaches in materials science and nanotechnology. Nature Publishing Group UK 2023-04-14 /pmc/articles/PMC10104841/ /pubmed/37059805 http://dx.doi.org/10.1038/s42004-023-00872-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article de Herrera, Andrea Greiner Markert, Thomas Trixler, Frank Temporal nanofluid environments induce prebiotic condensation in water |
title | Temporal nanofluid environments induce prebiotic condensation in water |
title_full | Temporal nanofluid environments induce prebiotic condensation in water |
title_fullStr | Temporal nanofluid environments induce prebiotic condensation in water |
title_full_unstemmed | Temporal nanofluid environments induce prebiotic condensation in water |
title_short | Temporal nanofluid environments induce prebiotic condensation in water |
title_sort | temporal nanofluid environments induce prebiotic condensation in water |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104841/ https://www.ncbi.nlm.nih.gov/pubmed/37059805 http://dx.doi.org/10.1038/s42004-023-00872-y |
work_keys_str_mv | AT deherreraandreagreiner temporalnanofluidenvironmentsinduceprebioticcondensationinwater AT markertthomas temporalnanofluidenvironmentsinduceprebioticcondensationinwater AT trixlerfrank temporalnanofluidenvironmentsinduceprebioticcondensationinwater |