Cargando…
Lysosomal lipid peroxidation mediates immunogenic cell death
Cancer cells rely on lysosome-dependent degradation to recycle nutrients that serve their energetic and biosynthetic needs. Despite great interest in repurposing the antimalarial hydroxychloroquine as a lysosomal inhibitor in clinical oncology trials, the mechanisms by which hydroxychloroquine and o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104885/ https://www.ncbi.nlm.nih.gov/pubmed/37066873 http://dx.doi.org/10.1172/JCI169240 |
Sumario: | Cancer cells rely on lysosome-dependent degradation to recycle nutrients that serve their energetic and biosynthetic needs. Despite great interest in repurposing the antimalarial hydroxychloroquine as a lysosomal inhibitor in clinical oncology trials, the mechanisms by which hydroxychloroquine and other lysosomal inhibitors induce tumor-cell cytotoxicity remain unclear. In this issue of the JCI, Bhardwaj et al. demonstrate that DC661, a dimeric form of chloroquine that inhibits palmitoyl-protein thioesterase 1 (PPT1), promoted lysosomal lipid peroxidation, resulting in lysosomal membrane permeabilization and tumor cell death. Remarkably, this lysosomal cell death pathway elicited cell-intrinsic immunogenicity and promoted T lymphocyte–mediated tumor cell clearance. The findings provide the mechanistic foundation for the potential combined use of immunotherapy and lysosomal inhibition in clinical trials. |
---|