Cargando…
T cells heal bone fractures with help from the gut microbiome
Immune cells play an important functional role in bone fracture healing. Fracture repair is a well-choreographed process that takes approximately 21 days in healthy mice. While the process is complex, conceptually it can be divided into four overlapping stages: inflammation, cartilaginous callus for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104886/ https://www.ncbi.nlm.nih.gov/pubmed/37066879 http://dx.doi.org/10.1172/JCI167311 |
Sumario: | Immune cells play an important functional role in bone fracture healing. Fracture repair is a well-choreographed process that takes approximately 21 days in healthy mice. While the process is complex, conceptually it can be divided into four overlapping stages: inflammation, cartilaginous callus formation, bony callus formation, and remodeling. T cells play a key role in both the cartilaginous and bony callus phases by producing IL-17A. In this issue of the JCI, Dar et al. showed that T cells were recruited from the gut, where the gut microbiota determined the pool of T cells that expressed IL-17A. Treatment with antibiotics and dysbiosis reduced the expansion of IL-17–expressing CD4(+) T cells (Th17) and impaired callus formation. These findings demonstrate crosstalk among the gut microbiota, the adaptive immune system, and bone that has clinical implications for fracture healing. |
---|