Cargando…
Identification and validation of cuproptosis related genes and signature markers in bronchopulmonary dysplasia disease using bioinformatics analysis and machine learning
BACKGROUND: Bronchopulmonary Dysplasia (BPD) has a high incidence and affects the health of preterm infants. Cuproptosis is a novel form of cell death, but its mechanism of action in the disease is not yet clear. Machine learning, the latest tool for the analysis of biological samples, is still rela...
Autores principales: | Jia, Mingxuan, Li, Jieyi, Zhang, Jingying, Wei, Ningjing, Yin, Yating, Chen, Hui, Yan, Shixing, Wang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105406/ https://www.ncbi.nlm.nih.gov/pubmed/37060021 http://dx.doi.org/10.1186/s12911-023-02163-x |
Ejemplares similares
-
A bioinformatics approach towards bronchopulmonary dysplasia
por: Valadie, Charles Taylor, et al.
Publicado: (2023) -
Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning
por: Ouyang, Guoqing, et al.
Publicado: (2023) -
Risk Identification of Bronchopulmonary Dysplasia in Premature Infants Based on Machine Learning
por: Lei, Jintao, et al.
Publicado: (2021) -
Circular RNAs expression profiles and bioinformatics analysis in bronchopulmonary dysplasia
por: Lun, Yu, et al.
Publicado: (2022) -
NOVEL BIOMARKERS OF BRONCHOPULMONARY DYSPLASIA AND BRONCHOPULMONARY DYSPLASIA-ASSOCIATED PULMONARY HYPERTENSION
por: Sahni, Mitali, et al.
Publicado: (2020)