Cargando…
Assessment of artificial intelligence (AI) reporting methodology in glioma MRI studies using the Checklist for AI in Medical Imaging (CLAIM)
PURPOSE: The Checklist for Artificial Intelligence in Medical Imaging (CLAIM) is a recently released guideline designed for the optimal reporting methodology of artificial intelligence (AI) studies. Gliomas are the most common form of primary malignant brain tumour and numerous outcomes derived from...
Autores principales: | Bhandari, Abhishta, Scott, Luke, Weilbach, Manuela, Marwah, Ravi, Lasocki, Arian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105653/ https://www.ncbi.nlm.nih.gov/pubmed/36746792 http://dx.doi.org/10.1007/s00234-023-03126-9 |
Ejemplares similares
-
Conventional MRI features can predict the molecular subtype of adult grade 2–3 intracranial diffuse gliomas
por: Lasocki, Arian, et al.
Publicado: (2022) -
Correlating MRI features with additional genetic markers and patient survival in histological grade 2-3 IDH-mutant astrocytomas
por: Lasocki, Arian, et al.
Publicado: (2023) -
Promises of artificial intelligence in neuroradiology: a systematic technographic review
por: Olthof, Allard W., et al.
Publicado: (2020) -
Comparing two artificial intelligence software packages for normative brain volumetry in memory clinic imaging
por: Zaki, Lara A. M., et al.
Publicado: (2022) -
Inter-rater reliability for assessing intracranial collaterals in patients with acute ischemic stroke: comparing 29 raters and an artificial intelligence-based software
por: Wolff, Lennard, et al.
Publicado: (2022)