Cargando…
Hippocampal inactivation during rearing on hind legs impairs spatial memory
Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal ac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105745/ https://www.ncbi.nlm.nih.gov/pubmed/37061540 http://dx.doi.org/10.1038/s41598-023-33209-9 |
Sumario: | Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal activity during these periods of attentive sampling for spatial memory is unknown. To address this, we tested the necessity of dorsal hippocampal activity during rearing epochs in the study phase of a delayed win-shift task for memory performance in the subsequent test phase. Hippocampal activity was manipulated with closed-loop, bilateral, optogenetic inactivation. Spatial memory accuracy was significantly and selectively reduced when the dorsal hippocampus was inactivated during rearing epochs at encoding. These data show that hippocampal activity during periods of rearing can be important for spatial memory, revealing a novel link between hippocampal function during epochs of rearing and spatial memory. |
---|