Cargando…
Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure
OBJECTIVE: Risk stratification of patients with congestive heart failure (HF) is vital in clinical practice. The aim of this study was to construct a machine learning model to predict the in-hospital all-cause mortality for intensive care unit (ICU) patients with HF. METHODS: eXtreme Gradient Boosti...
Autores principales: | Chen, Zijun, Li, Tingming, Guo, Sheng, Zeng, Deli, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106627/ https://www.ncbi.nlm.nih.gov/pubmed/37077747 http://dx.doi.org/10.3389/fcvm.2023.1119699 |
Ejemplares similares
-
Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database
por: Li, Fuhai, et al.
Publicado: (2021) -
Predicting in-hospital all-cause mortality in heart failure using machine learning
por: Mpanya, Dineo, et al.
Publicado: (2023) -
Machine learning models in heart failure with mildly reduced ejection fraction patients
por: Zhao, Hengli, et al.
Publicado: (2022) -
Comparison of Four Machine Learning Techniques for Prediction of Intensive Care Unit Length of Stay in Heart Transplantation Patients
por: Wang, Kan, et al.
Publicado: (2022) -
Machine Learning for Predicting Heart Failure Progression in Hypertrophic Cardiomyopathy
por: Fahmy, Ahmed S., et al.
Publicado: (2021)