Cargando…
Crop pest image classification based on improved densely connected convolutional network
INTRODUCTION: Crop pests have a great impact on the quality and yield of crops. The use of deep learning for the identification of crop pests is important for crop precise management. METHODS: To address the lack of data set and poor classification accuracy in current pest research, a large-scale pe...
Autores principales: | Peng, Hongxing, Xu, Huiming, Gao, Zongmei, Zhou, Zhiyan, Tian, Xingguo, Deng, Qianting, He, Huijun, Xian, Chunlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106646/ https://www.ncbi.nlm.nih.gov/pubmed/37077629 http://dx.doi.org/10.3389/fpls.2023.1133060 |
Ejemplares similares
-
Citrus Pests and Diseases Recognition Model Using Weakly Dense Connected Convolution Network
por: Xing, Shuli, et al.
Publicado: (2019) -
Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field
por: Yang, Guofeng, et al.
Publicado: (2021) -
Crop Pest Recognition in Real Agricultural Environment Using Convolutional Neural Networks by a Parallel Attention Mechanism
por: Zhao, Shengyi, et al.
Publicado: (2022) -
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting
por: Wen, Changji, et al.
Publicado: (2022) -
Skin Lesion Classification Using Densely Connected Convolutional Networks with Attention Residual Learning
por: Wu, Jing, et al.
Publicado: (2020)