Cargando…
An efficient tomato-detection method based on improved YOLOv4-tiny model in complex environment
Automatic and accurate detection of fruit in greenhouse is challenging due to complicated environment conditions. Leaves or branches occlusion, illumination variation, overlap and cluster between fruits make the fruit detection accuracy to decrease. To address this issue, an accurate and robust frui...
Autores principales: | Mbouembe, Philippe Lyonel Touko, Liu, Guoxu, Sikati, Jordane, Kim, Suk Chan, Kim, Jae Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106724/ https://www.ncbi.nlm.nih.gov/pubmed/37077640 http://dx.doi.org/10.3389/fpls.2023.1150958 |
Ejemplares similares
-
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3
por: Liu, Guoxu, et al.
Publicado: (2020) -
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022) -
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
por: Kulyukin, Vladimir A., et al.
Publicado: (2023) -
RGB-D Visual SLAM Based on Yolov4-Tiny in Indoor Dynamic Environment
por: Chang, Zhanyuan, et al.
Publicado: (2022) -
A novel optimized tiny YOLOv3 algorithm for the identification of objects in the lawn environment
por: Wang, Xinyan, et al.
Publicado: (2022)