Cargando…
Exponentially larger affine and projective caps
In spite of a recent breakthrough on upper bounds of the size of cap sets (by Croot, Lev and Pach and by Ellenberg and Gijswijt), the classical cap set constructions had not been affected. In this work, we introduce a very different method of construction for caps in all affine spaces with odd prime...
Autores principales: | Elsholtz, Christian, Lipnik, Gabriel F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107540/ https://www.ncbi.nlm.nih.gov/pubmed/37081924 http://dx.doi.org/10.1112/mtk.12173 |
Ejemplares similares
-
Large subsets of [Formula: see text] without arithmetic progressions
por: Elsholtz, Christian, et al.
Publicado: (2022) -
Caps and progression-free sets in [Formula: see text]
por: Elsholtz, Christian, et al.
Publicado: (2020) -
Generalized affine groups for exponential integrators
por: Berland, Håvard
Publicado: (2006) -
Exponential rise of dynamical complexity in quantum computing through projections
por: Burgarth, Daniel Klaus, et al.
Publicado: (2014) -
Heading for New Shores: Projecting Marine Distribution Ranges of Selected Larger Foraminifera
por: Weinmann, Anna E., et al.
Publicado: (2013)