Cargando…
Circulating proteins to predict COVID-19 severity
Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundance...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107586/ https://www.ncbi.nlm.nih.gov/pubmed/37069249 http://dx.doi.org/10.1038/s41598-023-31850-y |
_version_ | 1785026638554071040 |
---|---|
author | Su, Chen-Yang Zhou, Sirui Gonzalez-Kozlova, Edgar Butler-Laporte, Guillaume Brunet-Ratnasingham, Elsa Nakanishi, Tomoko Jeon, Wonseok Morrison, David R. Laurent, Laetitia Afilalo, Jonathan Afilalo, Marc Henry, Danielle Chen, Yiheng Carrasco-Zanini, Julia Farjoun, Yossi Pietzner, Maik Kimchi, Nofar Afrasiabi, Zaman Rezk, Nardin Bouab, Meriem Petitjean, Louis Guzman, Charlotte Xue, Xiaoqing Tselios, Chris Vulesevic, Branka Adeleye, Olumide Abdullah, Tala Almamlouk, Noor Moussa, Yara DeLuca, Chantal Duggan, Naomi Schurr, Erwin Brassard, Nathalie Durand, Madeleine Del Valle, Diane Marie Thompson, Ryan Cedillo, Mario A. Schadt, Eric Nie, Kai Simons, Nicole W. Mouskas, Konstantinos Zaki, Nicolas Patel, Manishkumar Xie, Hui Harris, Jocelyn Marvin, Robert Cheng, Esther Tuballes, Kevin Argueta, Kimberly Scott, Ieisha Greenwood, Celia M. T. Paterson, Clare Hinterberg, Michael A. Langenberg, Claudia Forgetta, Vincenzo Pineau, Joelle Mooser, Vincent Marron, Thomas Beckmann, Noam D. Kim-schulze, Seunghee Charney, Alexander W. Gnjatic, Sacha Kaufmann, Daniel E. Merad, Miriam Richards, J. Brent |
author_facet | Su, Chen-Yang Zhou, Sirui Gonzalez-Kozlova, Edgar Butler-Laporte, Guillaume Brunet-Ratnasingham, Elsa Nakanishi, Tomoko Jeon, Wonseok Morrison, David R. Laurent, Laetitia Afilalo, Jonathan Afilalo, Marc Henry, Danielle Chen, Yiheng Carrasco-Zanini, Julia Farjoun, Yossi Pietzner, Maik Kimchi, Nofar Afrasiabi, Zaman Rezk, Nardin Bouab, Meriem Petitjean, Louis Guzman, Charlotte Xue, Xiaoqing Tselios, Chris Vulesevic, Branka Adeleye, Olumide Abdullah, Tala Almamlouk, Noor Moussa, Yara DeLuca, Chantal Duggan, Naomi Schurr, Erwin Brassard, Nathalie Durand, Madeleine Del Valle, Diane Marie Thompson, Ryan Cedillo, Mario A. Schadt, Eric Nie, Kai Simons, Nicole W. Mouskas, Konstantinos Zaki, Nicolas Patel, Manishkumar Xie, Hui Harris, Jocelyn Marvin, Robert Cheng, Esther Tuballes, Kevin Argueta, Kimberly Scott, Ieisha Greenwood, Celia M. T. Paterson, Clare Hinterberg, Michael A. Langenberg, Claudia Forgetta, Vincenzo Pineau, Joelle Mooser, Vincent Marron, Thomas Beckmann, Noam D. Kim-schulze, Seunghee Charney, Alexander W. Gnjatic, Sacha Kaufmann, Daniel E. Merad, Miriam Richards, J. Brent |
author_sort | Su, Chen-Yang |
collection | PubMed |
description | Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care. |
format | Online Article Text |
id | pubmed-10107586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101075862023-04-18 Circulating proteins to predict COVID-19 severity Su, Chen-Yang Zhou, Sirui Gonzalez-Kozlova, Edgar Butler-Laporte, Guillaume Brunet-Ratnasingham, Elsa Nakanishi, Tomoko Jeon, Wonseok Morrison, David R. Laurent, Laetitia Afilalo, Jonathan Afilalo, Marc Henry, Danielle Chen, Yiheng Carrasco-Zanini, Julia Farjoun, Yossi Pietzner, Maik Kimchi, Nofar Afrasiabi, Zaman Rezk, Nardin Bouab, Meriem Petitjean, Louis Guzman, Charlotte Xue, Xiaoqing Tselios, Chris Vulesevic, Branka Adeleye, Olumide Abdullah, Tala Almamlouk, Noor Moussa, Yara DeLuca, Chantal Duggan, Naomi Schurr, Erwin Brassard, Nathalie Durand, Madeleine Del Valle, Diane Marie Thompson, Ryan Cedillo, Mario A. Schadt, Eric Nie, Kai Simons, Nicole W. Mouskas, Konstantinos Zaki, Nicolas Patel, Manishkumar Xie, Hui Harris, Jocelyn Marvin, Robert Cheng, Esther Tuballes, Kevin Argueta, Kimberly Scott, Ieisha Greenwood, Celia M. T. Paterson, Clare Hinterberg, Michael A. Langenberg, Claudia Forgetta, Vincenzo Pineau, Joelle Mooser, Vincent Marron, Thomas Beckmann, Noam D. Kim-schulze, Seunghee Charney, Alexander W. Gnjatic, Sacha Kaufmann, Daniel E. Merad, Miriam Richards, J. Brent Sci Rep Article Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care. Nature Publishing Group UK 2023-04-17 /pmc/articles/PMC10107586/ /pubmed/37069249 http://dx.doi.org/10.1038/s41598-023-31850-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Su, Chen-Yang Zhou, Sirui Gonzalez-Kozlova, Edgar Butler-Laporte, Guillaume Brunet-Ratnasingham, Elsa Nakanishi, Tomoko Jeon, Wonseok Morrison, David R. Laurent, Laetitia Afilalo, Jonathan Afilalo, Marc Henry, Danielle Chen, Yiheng Carrasco-Zanini, Julia Farjoun, Yossi Pietzner, Maik Kimchi, Nofar Afrasiabi, Zaman Rezk, Nardin Bouab, Meriem Petitjean, Louis Guzman, Charlotte Xue, Xiaoqing Tselios, Chris Vulesevic, Branka Adeleye, Olumide Abdullah, Tala Almamlouk, Noor Moussa, Yara DeLuca, Chantal Duggan, Naomi Schurr, Erwin Brassard, Nathalie Durand, Madeleine Del Valle, Diane Marie Thompson, Ryan Cedillo, Mario A. Schadt, Eric Nie, Kai Simons, Nicole W. Mouskas, Konstantinos Zaki, Nicolas Patel, Manishkumar Xie, Hui Harris, Jocelyn Marvin, Robert Cheng, Esther Tuballes, Kevin Argueta, Kimberly Scott, Ieisha Greenwood, Celia M. T. Paterson, Clare Hinterberg, Michael A. Langenberg, Claudia Forgetta, Vincenzo Pineau, Joelle Mooser, Vincent Marron, Thomas Beckmann, Noam D. Kim-schulze, Seunghee Charney, Alexander W. Gnjatic, Sacha Kaufmann, Daniel E. Merad, Miriam Richards, J. Brent Circulating proteins to predict COVID-19 severity |
title | Circulating proteins to predict COVID-19 severity |
title_full | Circulating proteins to predict COVID-19 severity |
title_fullStr | Circulating proteins to predict COVID-19 severity |
title_full_unstemmed | Circulating proteins to predict COVID-19 severity |
title_short | Circulating proteins to predict COVID-19 severity |
title_sort | circulating proteins to predict covid-19 severity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107586/ https://www.ncbi.nlm.nih.gov/pubmed/37069249 http://dx.doi.org/10.1038/s41598-023-31850-y |
work_keys_str_mv | AT suchenyang circulatingproteinstopredictcovid19severity AT zhousirui circulatingproteinstopredictcovid19severity AT gonzalezkozlovaedgar circulatingproteinstopredictcovid19severity AT butlerlaporteguillaume circulatingproteinstopredictcovid19severity AT brunetratnasinghamelsa circulatingproteinstopredictcovid19severity AT nakanishitomoko circulatingproteinstopredictcovid19severity AT jeonwonseok circulatingproteinstopredictcovid19severity AT morrisondavidr circulatingproteinstopredictcovid19severity AT laurentlaetitia circulatingproteinstopredictcovid19severity AT afilalojonathan circulatingproteinstopredictcovid19severity AT afilalomarc circulatingproteinstopredictcovid19severity AT henrydanielle circulatingproteinstopredictcovid19severity AT chenyiheng circulatingproteinstopredictcovid19severity AT carrascozaninijulia circulatingproteinstopredictcovid19severity AT farjounyossi circulatingproteinstopredictcovid19severity AT pietznermaik circulatingproteinstopredictcovid19severity AT kimchinofar circulatingproteinstopredictcovid19severity AT afrasiabizaman circulatingproteinstopredictcovid19severity AT rezknardin circulatingproteinstopredictcovid19severity AT bouabmeriem circulatingproteinstopredictcovid19severity AT petitjeanlouis circulatingproteinstopredictcovid19severity AT guzmancharlotte circulatingproteinstopredictcovid19severity AT xuexiaoqing circulatingproteinstopredictcovid19severity AT tselioschris circulatingproteinstopredictcovid19severity AT vulesevicbranka circulatingproteinstopredictcovid19severity AT adeleyeolumide circulatingproteinstopredictcovid19severity AT abdullahtala circulatingproteinstopredictcovid19severity AT almamlouknoor circulatingproteinstopredictcovid19severity AT moussayara circulatingproteinstopredictcovid19severity AT delucachantal circulatingproteinstopredictcovid19severity AT duggannaomi circulatingproteinstopredictcovid19severity AT schurrerwin circulatingproteinstopredictcovid19severity AT brassardnathalie circulatingproteinstopredictcovid19severity AT durandmadeleine circulatingproteinstopredictcovid19severity AT delvalledianemarie circulatingproteinstopredictcovid19severity AT thompsonryan circulatingproteinstopredictcovid19severity AT cedillomarioa circulatingproteinstopredictcovid19severity AT schadteric circulatingproteinstopredictcovid19severity AT niekai circulatingproteinstopredictcovid19severity AT simonsnicolew circulatingproteinstopredictcovid19severity AT mouskaskonstantinos circulatingproteinstopredictcovid19severity AT zakinicolas circulatingproteinstopredictcovid19severity AT patelmanishkumar circulatingproteinstopredictcovid19severity AT xiehui circulatingproteinstopredictcovid19severity AT harrisjocelyn circulatingproteinstopredictcovid19severity AT marvinrobert circulatingproteinstopredictcovid19severity AT chengesther circulatingproteinstopredictcovid19severity AT tuballeskevin circulatingproteinstopredictcovid19severity AT arguetakimberly circulatingproteinstopredictcovid19severity AT scottieisha circulatingproteinstopredictcovid19severity AT circulatingproteinstopredictcovid19severity AT greenwoodceliamt circulatingproteinstopredictcovid19severity AT patersonclare circulatingproteinstopredictcovid19severity AT hinterbergmichaela circulatingproteinstopredictcovid19severity AT langenbergclaudia circulatingproteinstopredictcovid19severity AT forgettavincenzo circulatingproteinstopredictcovid19severity AT pineaujoelle circulatingproteinstopredictcovid19severity AT mooservincent circulatingproteinstopredictcovid19severity AT marronthomas circulatingproteinstopredictcovid19severity AT beckmannnoamd circulatingproteinstopredictcovid19severity AT kimschulzeseunghee circulatingproteinstopredictcovid19severity AT charneyalexanderw circulatingproteinstopredictcovid19severity AT gnjaticsacha circulatingproteinstopredictcovid19severity AT kaufmanndaniele circulatingproteinstopredictcovid19severity AT meradmiriam circulatingproteinstopredictcovid19severity AT richardsjbrent circulatingproteinstopredictcovid19severity |