Cargando…

Circulating proteins to predict COVID-19 severity

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundance...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Chen-Yang, Zhou, Sirui, Gonzalez-Kozlova, Edgar, Butler-Laporte, Guillaume, Brunet-Ratnasingham, Elsa, Nakanishi, Tomoko, Jeon, Wonseok, Morrison, David R., Laurent, Laetitia, Afilalo, Jonathan, Afilalo, Marc, Henry, Danielle, Chen, Yiheng, Carrasco-Zanini, Julia, Farjoun, Yossi, Pietzner, Maik, Kimchi, Nofar, Afrasiabi, Zaman, Rezk, Nardin, Bouab, Meriem, Petitjean, Louis, Guzman, Charlotte, Xue, Xiaoqing, Tselios, Chris, Vulesevic, Branka, Adeleye, Olumide, Abdullah, Tala, Almamlouk, Noor, Moussa, Yara, DeLuca, Chantal, Duggan, Naomi, Schurr, Erwin, Brassard, Nathalie, Durand, Madeleine, Del Valle, Diane Marie, Thompson, Ryan, Cedillo, Mario A., Schadt, Eric, Nie, Kai, Simons, Nicole W., Mouskas, Konstantinos, Zaki, Nicolas, Patel, Manishkumar, Xie, Hui, Harris, Jocelyn, Marvin, Robert, Cheng, Esther, Tuballes, Kevin, Argueta, Kimberly, Scott, Ieisha, Greenwood, Celia M. T., Paterson, Clare, Hinterberg, Michael A., Langenberg, Claudia, Forgetta, Vincenzo, Pineau, Joelle, Mooser, Vincent, Marron, Thomas, Beckmann, Noam D., Kim-schulze, Seunghee, Charney, Alexander W., Gnjatic, Sacha, Kaufmann, Daniel E., Merad, Miriam, Richards, J. Brent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107586/
https://www.ncbi.nlm.nih.gov/pubmed/37069249
http://dx.doi.org/10.1038/s41598-023-31850-y
_version_ 1785026638554071040
author Su, Chen-Yang
Zhou, Sirui
Gonzalez-Kozlova, Edgar
Butler-Laporte, Guillaume
Brunet-Ratnasingham, Elsa
Nakanishi, Tomoko
Jeon, Wonseok
Morrison, David R.
Laurent, Laetitia
Afilalo, Jonathan
Afilalo, Marc
Henry, Danielle
Chen, Yiheng
Carrasco-Zanini, Julia
Farjoun, Yossi
Pietzner, Maik
Kimchi, Nofar
Afrasiabi, Zaman
Rezk, Nardin
Bouab, Meriem
Petitjean, Louis
Guzman, Charlotte
Xue, Xiaoqing
Tselios, Chris
Vulesevic, Branka
Adeleye, Olumide
Abdullah, Tala
Almamlouk, Noor
Moussa, Yara
DeLuca, Chantal
Duggan, Naomi
Schurr, Erwin
Brassard, Nathalie
Durand, Madeleine
Del Valle, Diane Marie
Thompson, Ryan
Cedillo, Mario A.
Schadt, Eric
Nie, Kai
Simons, Nicole W.
Mouskas, Konstantinos
Zaki, Nicolas
Patel, Manishkumar
Xie, Hui
Harris, Jocelyn
Marvin, Robert
Cheng, Esther
Tuballes, Kevin
Argueta, Kimberly
Scott, Ieisha
Greenwood, Celia M. T.
Paterson, Clare
Hinterberg, Michael A.
Langenberg, Claudia
Forgetta, Vincenzo
Pineau, Joelle
Mooser, Vincent
Marron, Thomas
Beckmann, Noam D.
Kim-schulze, Seunghee
Charney, Alexander W.
Gnjatic, Sacha
Kaufmann, Daniel E.
Merad, Miriam
Richards, J. Brent
author_facet Su, Chen-Yang
Zhou, Sirui
Gonzalez-Kozlova, Edgar
Butler-Laporte, Guillaume
Brunet-Ratnasingham, Elsa
Nakanishi, Tomoko
Jeon, Wonseok
Morrison, David R.
Laurent, Laetitia
Afilalo, Jonathan
Afilalo, Marc
Henry, Danielle
Chen, Yiheng
Carrasco-Zanini, Julia
Farjoun, Yossi
Pietzner, Maik
Kimchi, Nofar
Afrasiabi, Zaman
Rezk, Nardin
Bouab, Meriem
Petitjean, Louis
Guzman, Charlotte
Xue, Xiaoqing
Tselios, Chris
Vulesevic, Branka
Adeleye, Olumide
Abdullah, Tala
Almamlouk, Noor
Moussa, Yara
DeLuca, Chantal
Duggan, Naomi
Schurr, Erwin
Brassard, Nathalie
Durand, Madeleine
Del Valle, Diane Marie
Thompson, Ryan
Cedillo, Mario A.
Schadt, Eric
Nie, Kai
Simons, Nicole W.
Mouskas, Konstantinos
Zaki, Nicolas
Patel, Manishkumar
Xie, Hui
Harris, Jocelyn
Marvin, Robert
Cheng, Esther
Tuballes, Kevin
Argueta, Kimberly
Scott, Ieisha
Greenwood, Celia M. T.
Paterson, Clare
Hinterberg, Michael A.
Langenberg, Claudia
Forgetta, Vincenzo
Pineau, Joelle
Mooser, Vincent
Marron, Thomas
Beckmann, Noam D.
Kim-schulze, Seunghee
Charney, Alexander W.
Gnjatic, Sacha
Kaufmann, Daniel E.
Merad, Miriam
Richards, J. Brent
author_sort Su, Chen-Yang
collection PubMed
description Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.
format Online
Article
Text
id pubmed-10107586
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101075862023-04-18 Circulating proteins to predict COVID-19 severity Su, Chen-Yang Zhou, Sirui Gonzalez-Kozlova, Edgar Butler-Laporte, Guillaume Brunet-Ratnasingham, Elsa Nakanishi, Tomoko Jeon, Wonseok Morrison, David R. Laurent, Laetitia Afilalo, Jonathan Afilalo, Marc Henry, Danielle Chen, Yiheng Carrasco-Zanini, Julia Farjoun, Yossi Pietzner, Maik Kimchi, Nofar Afrasiabi, Zaman Rezk, Nardin Bouab, Meriem Petitjean, Louis Guzman, Charlotte Xue, Xiaoqing Tselios, Chris Vulesevic, Branka Adeleye, Olumide Abdullah, Tala Almamlouk, Noor Moussa, Yara DeLuca, Chantal Duggan, Naomi Schurr, Erwin Brassard, Nathalie Durand, Madeleine Del Valle, Diane Marie Thompson, Ryan Cedillo, Mario A. Schadt, Eric Nie, Kai Simons, Nicole W. Mouskas, Konstantinos Zaki, Nicolas Patel, Manishkumar Xie, Hui Harris, Jocelyn Marvin, Robert Cheng, Esther Tuballes, Kevin Argueta, Kimberly Scott, Ieisha Greenwood, Celia M. T. Paterson, Clare Hinterberg, Michael A. Langenberg, Claudia Forgetta, Vincenzo Pineau, Joelle Mooser, Vincent Marron, Thomas Beckmann, Noam D. Kim-schulze, Seunghee Charney, Alexander W. Gnjatic, Sacha Kaufmann, Daniel E. Merad, Miriam Richards, J. Brent Sci Rep Article Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care. Nature Publishing Group UK 2023-04-17 /pmc/articles/PMC10107586/ /pubmed/37069249 http://dx.doi.org/10.1038/s41598-023-31850-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Su, Chen-Yang
Zhou, Sirui
Gonzalez-Kozlova, Edgar
Butler-Laporte, Guillaume
Brunet-Ratnasingham, Elsa
Nakanishi, Tomoko
Jeon, Wonseok
Morrison, David R.
Laurent, Laetitia
Afilalo, Jonathan
Afilalo, Marc
Henry, Danielle
Chen, Yiheng
Carrasco-Zanini, Julia
Farjoun, Yossi
Pietzner, Maik
Kimchi, Nofar
Afrasiabi, Zaman
Rezk, Nardin
Bouab, Meriem
Petitjean, Louis
Guzman, Charlotte
Xue, Xiaoqing
Tselios, Chris
Vulesevic, Branka
Adeleye, Olumide
Abdullah, Tala
Almamlouk, Noor
Moussa, Yara
DeLuca, Chantal
Duggan, Naomi
Schurr, Erwin
Brassard, Nathalie
Durand, Madeleine
Del Valle, Diane Marie
Thompson, Ryan
Cedillo, Mario A.
Schadt, Eric
Nie, Kai
Simons, Nicole W.
Mouskas, Konstantinos
Zaki, Nicolas
Patel, Manishkumar
Xie, Hui
Harris, Jocelyn
Marvin, Robert
Cheng, Esther
Tuballes, Kevin
Argueta, Kimberly
Scott, Ieisha
Greenwood, Celia M. T.
Paterson, Clare
Hinterberg, Michael A.
Langenberg, Claudia
Forgetta, Vincenzo
Pineau, Joelle
Mooser, Vincent
Marron, Thomas
Beckmann, Noam D.
Kim-schulze, Seunghee
Charney, Alexander W.
Gnjatic, Sacha
Kaufmann, Daniel E.
Merad, Miriam
Richards, J. Brent
Circulating proteins to predict COVID-19 severity
title Circulating proteins to predict COVID-19 severity
title_full Circulating proteins to predict COVID-19 severity
title_fullStr Circulating proteins to predict COVID-19 severity
title_full_unstemmed Circulating proteins to predict COVID-19 severity
title_short Circulating proteins to predict COVID-19 severity
title_sort circulating proteins to predict covid-19 severity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107586/
https://www.ncbi.nlm.nih.gov/pubmed/37069249
http://dx.doi.org/10.1038/s41598-023-31850-y
work_keys_str_mv AT suchenyang circulatingproteinstopredictcovid19severity
AT zhousirui circulatingproteinstopredictcovid19severity
AT gonzalezkozlovaedgar circulatingproteinstopredictcovid19severity
AT butlerlaporteguillaume circulatingproteinstopredictcovid19severity
AT brunetratnasinghamelsa circulatingproteinstopredictcovid19severity
AT nakanishitomoko circulatingproteinstopredictcovid19severity
AT jeonwonseok circulatingproteinstopredictcovid19severity
AT morrisondavidr circulatingproteinstopredictcovid19severity
AT laurentlaetitia circulatingproteinstopredictcovid19severity
AT afilalojonathan circulatingproteinstopredictcovid19severity
AT afilalomarc circulatingproteinstopredictcovid19severity
AT henrydanielle circulatingproteinstopredictcovid19severity
AT chenyiheng circulatingproteinstopredictcovid19severity
AT carrascozaninijulia circulatingproteinstopredictcovid19severity
AT farjounyossi circulatingproteinstopredictcovid19severity
AT pietznermaik circulatingproteinstopredictcovid19severity
AT kimchinofar circulatingproteinstopredictcovid19severity
AT afrasiabizaman circulatingproteinstopredictcovid19severity
AT rezknardin circulatingproteinstopredictcovid19severity
AT bouabmeriem circulatingproteinstopredictcovid19severity
AT petitjeanlouis circulatingproteinstopredictcovid19severity
AT guzmancharlotte circulatingproteinstopredictcovid19severity
AT xuexiaoqing circulatingproteinstopredictcovid19severity
AT tselioschris circulatingproteinstopredictcovid19severity
AT vulesevicbranka circulatingproteinstopredictcovid19severity
AT adeleyeolumide circulatingproteinstopredictcovid19severity
AT abdullahtala circulatingproteinstopredictcovid19severity
AT almamlouknoor circulatingproteinstopredictcovid19severity
AT moussayara circulatingproteinstopredictcovid19severity
AT delucachantal circulatingproteinstopredictcovid19severity
AT duggannaomi circulatingproteinstopredictcovid19severity
AT schurrerwin circulatingproteinstopredictcovid19severity
AT brassardnathalie circulatingproteinstopredictcovid19severity
AT durandmadeleine circulatingproteinstopredictcovid19severity
AT delvalledianemarie circulatingproteinstopredictcovid19severity
AT thompsonryan circulatingproteinstopredictcovid19severity
AT cedillomarioa circulatingproteinstopredictcovid19severity
AT schadteric circulatingproteinstopredictcovid19severity
AT niekai circulatingproteinstopredictcovid19severity
AT simonsnicolew circulatingproteinstopredictcovid19severity
AT mouskaskonstantinos circulatingproteinstopredictcovid19severity
AT zakinicolas circulatingproteinstopredictcovid19severity
AT patelmanishkumar circulatingproteinstopredictcovid19severity
AT xiehui circulatingproteinstopredictcovid19severity
AT harrisjocelyn circulatingproteinstopredictcovid19severity
AT marvinrobert circulatingproteinstopredictcovid19severity
AT chengesther circulatingproteinstopredictcovid19severity
AT tuballeskevin circulatingproteinstopredictcovid19severity
AT arguetakimberly circulatingproteinstopredictcovid19severity
AT scottieisha circulatingproteinstopredictcovid19severity
AT circulatingproteinstopredictcovid19severity
AT greenwoodceliamt circulatingproteinstopredictcovid19severity
AT patersonclare circulatingproteinstopredictcovid19severity
AT hinterbergmichaela circulatingproteinstopredictcovid19severity
AT langenbergclaudia circulatingproteinstopredictcovid19severity
AT forgettavincenzo circulatingproteinstopredictcovid19severity
AT pineaujoelle circulatingproteinstopredictcovid19severity
AT mooservincent circulatingproteinstopredictcovid19severity
AT marronthomas circulatingproteinstopredictcovid19severity
AT beckmannnoamd circulatingproteinstopredictcovid19severity
AT kimschulzeseunghee circulatingproteinstopredictcovid19severity
AT charneyalexanderw circulatingproteinstopredictcovid19severity
AT gnjaticsacha circulatingproteinstopredictcovid19severity
AT kaufmanndaniele circulatingproteinstopredictcovid19severity
AT meradmiriam circulatingproteinstopredictcovid19severity
AT richardsjbrent circulatingproteinstopredictcovid19severity