Cargando…

Non‐chlorophyllous and crypto‐chlorophyllous fern spores differ in their mobilisation of fatty acids during priming

During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pedrero‐López, Luis V., Flores‐Ortiz, César M., Pérez‐García, Blanca, Cruz‐Ortega, Rocío, Mehltreter, Klaus, Sánchez‐Coronado, María E., Hernández‐Portilla, Luis Barbo, Contreras‐Jiménez, Gastón, Orozco‐Segovia, Alma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107703/
https://www.ncbi.nlm.nih.gov/pubmed/36628548
http://dx.doi.org/10.1111/ppl.13848
Descripción
Sumario:During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration–dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non‐chlorophyllous and crypto‐chlorophyllous). The fatty acid concentration was determined by gas chromatograph–mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high‐resolution liquid chromatography with a DAD‐UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non‐chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto‐chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto‐chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre‐existing lipids and less fatty acids as ‘building blocks’ for cell membranes than non‐chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.