Cargando…

Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna

Plant‐specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant‐specialized metabolic networks are poorly characterized. The N‐methyl Δ(1)‐pyrrolinium cation is a simple pyrrolidine alkaloid and precurso...

Descripción completa

Detalles Bibliográficos
Autores principales: Parks, Hannah M., Cinelli, Maris A., Bedewitz, Matthew A., Grabar, Josh M., Hurney, Steven M., Walker, Kevin D., Jones, A. Daniel, Barry, Cornelius S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107824/
https://www.ncbi.nlm.nih.gov/pubmed/36451537
http://dx.doi.org/10.1111/nph.18651
_version_ 1785026691530227712
author Parks, Hannah M.
Cinelli, Maris A.
Bedewitz, Matthew A.
Grabar, Josh M.
Hurney, Steven M.
Walker, Kevin D.
Jones, A. Daniel
Barry, Cornelius S.
author_facet Parks, Hannah M.
Cinelli, Maris A.
Bedewitz, Matthew A.
Grabar, Josh M.
Hurney, Steven M.
Walker, Kevin D.
Jones, A. Daniel
Barry, Cornelius S.
author_sort Parks, Hannah M.
collection PubMed
description Plant‐specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant‐specialized metabolic networks are poorly characterized. The N‐methyl Δ(1)‐pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N‐methyl Δ(1)‐pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich‐like decarboxylative condensation of the N‐methyl Δ(1)‐pyrrolinium cation with 2‐O‐malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono‐ and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.
format Online
Article
Text
id pubmed-10107824
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101078242023-04-18 Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna Parks, Hannah M. Cinelli, Maris A. Bedewitz, Matthew A. Grabar, Josh M. Hurney, Steven M. Walker, Kevin D. Jones, A. Daniel Barry, Cornelius S. New Phytol Research Plant‐specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant‐specialized metabolic networks are poorly characterized. The N‐methyl Δ(1)‐pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N‐methyl Δ(1)‐pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich‐like decarboxylative condensation of the N‐methyl Δ(1)‐pyrrolinium cation with 2‐O‐malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono‐ and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids. John Wiley and Sons Inc. 2022-12-18 2023-03 /pmc/articles/PMC10107824/ /pubmed/36451537 http://dx.doi.org/10.1111/nph.18651 Text en © 2022 The Authors New Phytologist © 2022 New Phytologist Foundation https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research
Parks, Hannah M.
Cinelli, Maris A.
Bedewitz, Matthew A.
Grabar, Josh M.
Hurney, Steven M.
Walker, Kevin D.
Jones, A. Daniel
Barry, Cornelius S.
Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna
title Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna
title_full Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna
title_fullStr Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna
title_full_unstemmed Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna
title_short Redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in Atropa belladonna
title_sort redirecting tropane alkaloid metabolism reveals pyrrolidine alkaloid diversity in atropa belladonna
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107824/
https://www.ncbi.nlm.nih.gov/pubmed/36451537
http://dx.doi.org/10.1111/nph.18651
work_keys_str_mv AT parkshannahm redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT cinellimarisa redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT bedewitzmatthewa redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT grabarjoshm redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT hurneystevenm redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT walkerkevind redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT jonesadaniel redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna
AT barrycorneliuss redirectingtropanealkaloidmetabolismrevealspyrrolidinealkaloiddiversityinatropabelladonna