Cargando…

Anion Storage Chemistry of Organic Cathodes for High‐Energy and High‐Power Density Divalent Metal Batteries

Multivalent batteries show promising prospects for next‐generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)(4)] anions in both Magnesium (Mg) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiu, Yanlei, Mauri, Anna, Dinda, Sirshendu, Pramudya, Yohanes, Ding, Ziming, Diemant, Thomas, Sarkar, Abhishek, Wang, Liping, Li, Zhenyou, Wenzel, Wolfgang, Fichtner, Maximilian, Zhao‐Karger, Zhirong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107827/
https://www.ncbi.nlm.nih.gov/pubmed/36269169
http://dx.doi.org/10.1002/anie.202212339
Descripción
Sumario:Multivalent batteries show promising prospects for next‐generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)(4)] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high‐power density of ∼∼3000 W kg(−1) and a high‐energy density of ∼∼300 Wh kg(−1), respectively. Moreover, the combination of the PTPAn cathode with a calcium‐tin (Ca−Sn) alloy anode could enable a long battery‐life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual‐ion electrochemical concept demonstrates a new feasible pathway towards high‐performance divalent ion batteries.