Cargando…

Testing the chilling‐ before drought‐tolerance hypothesis in Pooideae grasses

Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above‐freezing...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Aayudh, Dedon, Natalie, Enders, Daniel J., Fjellheim, Siri, Preston, Jill C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107940/
https://www.ncbi.nlm.nih.gov/pubmed/36420966
http://dx.doi.org/10.1111/mec.16794
Descripción
Sumario:Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above‐freezing cold (chilling) tolerance evolved early in the subfamily. By contrast, drought tolerance is hypothesized to have evolved multiple times independently in response to global aridification that occurred after the split of Pooideae tribes. To independently test predictions of the chilling‐before‐drought hypothesis in Pooideae, we assessed conservation of whole plant and gene expression traits in response to chilling vs. drought. We demonstrated that both trait responses are more similar across tribes in cold as compared to drought, suggesting that chilling responses evolved before, and drought responses after, tribe diversification. Moreover, we found significantly more overlap between drought and chilling responsive genes within a species than between drought responsive genes across species, providing evidence that chilling tolerance genes acted as precursors for the novel acquisition of increased drought tolerance multiple times independently, partially through the cooption of chilling responsive genes.