Cargando…
Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato
The ubiquitous lipid-derived molecules N-acylethanolamines (NAEs) have multiple immune functions in mammals, but their roles and mechanisms in plant defense response during changing environment remain largely unclear. Here, we found that exogenous NAE18:0 and NAE18:2 promoted defense against the nec...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108025/ https://www.ncbi.nlm.nih.gov/pubmed/37077371 http://dx.doi.org/10.1093/hr/uhac242 |
_version_ | 1785026750348001280 |
---|---|
author | Hu, Zhangjian Shi, Junying Feng, Shuxian Wu, Xiaodan Shao, Shujun Shi, Kai |
author_facet | Hu, Zhangjian Shi, Junying Feng, Shuxian Wu, Xiaodan Shao, Shujun Shi, Kai |
author_sort | Hu, Zhangjian |
collection | PubMed |
description | The ubiquitous lipid-derived molecules N-acylethanolamines (NAEs) have multiple immune functions in mammals, but their roles and mechanisms in plant defense response during changing environment remain largely unclear. Here, we found that exogenous NAE18:0 and NAE18:2 promoted defense against the necrotrophic pathogen Botrytis cinerea but suppressed defense to the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 in tomato. The knocking-down and overexpression function analysis of the pathogen-responsive NAE synthetic gene PHOSPHOLIPASE Dγ (PLDγ) and hydrolytic gene FATTY ACID AMID HYDROLASE 1 (FAAH1) revealed that the NAE pathway is crucial for plant defense response. Using exogenous applications and SA-abolished NahG plants, we unveiled the antagonistic relationship between NAE and SA in plant defense response. Elevated CO(2) and temperature significantly changed the NAE pathway in response to pathogens, while inhibition of the NAE pathway led to the alternation of environment-mediated defense variations against Pst DC3000 in tomato, indicating that NAE pathway is associated with plant defense variations in response to elevated CO(2) and temperature. The results herein reveal a new function of NAE in plant defense, and its involvement in environment-mediated defense variation in tomato. These findings shed light on the NAE-based plant defense, which may have relevance to crop disease management in future changing climate. |
format | Online Article Text |
id | pubmed-10108025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101080252023-04-18 Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato Hu, Zhangjian Shi, Junying Feng, Shuxian Wu, Xiaodan Shao, Shujun Shi, Kai Hortic Res Article The ubiquitous lipid-derived molecules N-acylethanolamines (NAEs) have multiple immune functions in mammals, but their roles and mechanisms in plant defense response during changing environment remain largely unclear. Here, we found that exogenous NAE18:0 and NAE18:2 promoted defense against the necrotrophic pathogen Botrytis cinerea but suppressed defense to the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 in tomato. The knocking-down and overexpression function analysis of the pathogen-responsive NAE synthetic gene PHOSPHOLIPASE Dγ (PLDγ) and hydrolytic gene FATTY ACID AMID HYDROLASE 1 (FAAH1) revealed that the NAE pathway is crucial for plant defense response. Using exogenous applications and SA-abolished NahG plants, we unveiled the antagonistic relationship between NAE and SA in plant defense response. Elevated CO(2) and temperature significantly changed the NAE pathway in response to pathogens, while inhibition of the NAE pathway led to the alternation of environment-mediated defense variations against Pst DC3000 in tomato, indicating that NAE pathway is associated with plant defense variations in response to elevated CO(2) and temperature. The results herein reveal a new function of NAE in plant defense, and its involvement in environment-mediated defense variation in tomato. These findings shed light on the NAE-based plant defense, which may have relevance to crop disease management in future changing climate. Oxford University Press 2022-10-26 /pmc/articles/PMC10108025/ /pubmed/37077371 http://dx.doi.org/10.1093/hr/uhac242 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nanjing Agricultural University https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Hu, Zhangjian Shi, Junying Feng, Shuxian Wu, Xiaodan Shao, Shujun Shi, Kai Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato |
title | Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato |
title_full | Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato |
title_fullStr | Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato |
title_full_unstemmed | Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato |
title_short | Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO(2) and temperature in tomato |
title_sort | plant n-acylethanolamines play a crucial role in defense and its variation in response to elevated co(2) and temperature in tomato |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108025/ https://www.ncbi.nlm.nih.gov/pubmed/37077371 http://dx.doi.org/10.1093/hr/uhac242 |
work_keys_str_mv | AT huzhangjian plantnacylethanolaminesplayacrucialroleindefenseanditsvariationinresponsetoelevatedco2andtemperatureintomato AT shijunying plantnacylethanolaminesplayacrucialroleindefenseanditsvariationinresponsetoelevatedco2andtemperatureintomato AT fengshuxian plantnacylethanolaminesplayacrucialroleindefenseanditsvariationinresponsetoelevatedco2andtemperatureintomato AT wuxiaodan plantnacylethanolaminesplayacrucialroleindefenseanditsvariationinresponsetoelevatedco2andtemperatureintomato AT shaoshujun plantnacylethanolaminesplayacrucialroleindefenseanditsvariationinresponsetoelevatedco2andtemperatureintomato AT shikai plantnacylethanolaminesplayacrucialroleindefenseanditsvariationinresponsetoelevatedco2andtemperatureintomato |