Cargando…
Off‐center Mechanophore Activation in Block Copolymers
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs’ heterogeneity may affect force...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108114/ https://www.ncbi.nlm.nih.gov/pubmed/36394518 http://dx.doi.org/10.1002/anie.202213980 |
_version_ | 1785026779951398912 |
---|---|
author | Zhang, Hang Diesendruck, Charles E. |
author_facet | Zhang, Hang Diesendruck, Charles E. |
author_sort | Zhang, Hang |
collection | PubMed |
description | Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs’ heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem‐dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring‐opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi‐mechanophores regions, even when far from the polymer midchain. |
format | Online Article Text |
id | pubmed-10108114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101081142023-04-18 Off‐center Mechanophore Activation in Block Copolymers Zhang, Hang Diesendruck, Charles E. Angew Chem Int Ed Engl Research Articles Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs’ heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem‐dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring‐opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi‐mechanophores regions, even when far from the polymer midchain. John Wiley and Sons Inc. 2022-12-07 2023-01-09 /pmc/articles/PMC10108114/ /pubmed/36394518 http://dx.doi.org/10.1002/anie.202213980 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Zhang, Hang Diesendruck, Charles E. Off‐center Mechanophore Activation in Block Copolymers |
title | Off‐center Mechanophore Activation in Block Copolymers |
title_full | Off‐center Mechanophore Activation in Block Copolymers |
title_fullStr | Off‐center Mechanophore Activation in Block Copolymers |
title_full_unstemmed | Off‐center Mechanophore Activation in Block Copolymers |
title_short | Off‐center Mechanophore Activation in Block Copolymers |
title_sort | off‐center mechanophore activation in block copolymers |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108114/ https://www.ncbi.nlm.nih.gov/pubmed/36394518 http://dx.doi.org/10.1002/anie.202213980 |
work_keys_str_mv | AT zhanghang offcentermechanophoreactivationinblockcopolymers AT diesendruckcharlese offcentermechanophoreactivationinblockcopolymers |