Cargando…

Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System

Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal‐substituted manganese oxide (spinel) nanoparticles, Mn(3)O(4):M (M=...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yi‐Hsuan, Mehta, Harshit, Willinger, Elena, Yuwono, Jodie A., Kumar, Priyank V., Abdala, Paula M., Wach, Anna, Kierzkowska, Agnieszka, Donat, Felix, Kuznetsov, Denis A., Müller, Christoph R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108258/
https://www.ncbi.nlm.nih.gov/pubmed/36538473
http://dx.doi.org/10.1002/anie.202217186
_version_ 1785026812664872960
author Wu, Yi‐Hsuan
Mehta, Harshit
Willinger, Elena
Yuwono, Jodie A.
Kumar, Priyank V.
Abdala, Paula M.
Wach, Anna
Kierzkowska, Agnieszka
Donat, Felix
Kuznetsov, Denis A.
Müller, Christoph R.
author_facet Wu, Yi‐Hsuan
Mehta, Harshit
Willinger, Elena
Yuwono, Jodie A.
Kumar, Priyank V.
Abdala, Paula M.
Wach, Anna
Kierzkowska, Agnieszka
Donat, Felix
Kuznetsov, Denis A.
Müller, Christoph R.
author_sort Wu, Yi‐Hsuan
collection PubMed
description Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal‐substituted manganese oxide (spinel) nanoparticles, Mn(3)O(4):M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn(3)O(4):M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δ( f )H°(MO), and the Lewis acidity of the M(2+) substituent. Incorporation of elements M with low Δ( f )H°(MO) enhances the oxygen binding strength in Mn(3)O(4):M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox‐inactive elements.
format Online
Article
Text
id pubmed-10108258
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101082582023-04-18 Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System Wu, Yi‐Hsuan Mehta, Harshit Willinger, Elena Yuwono, Jodie A. Kumar, Priyank V. Abdala, Paula M. Wach, Anna Kierzkowska, Agnieszka Donat, Felix Kuznetsov, Denis A. Müller, Christoph R. Angew Chem Int Ed Engl Research Articles Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal‐substituted manganese oxide (spinel) nanoparticles, Mn(3)O(4):M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn(3)O(4):M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δ( f )H°(MO), and the Lewis acidity of the M(2+) substituent. Incorporation of elements M with low Δ( f )H°(MO) enhances the oxygen binding strength in Mn(3)O(4):M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox‐inactive elements. John Wiley and Sons Inc. 2023-01-12 2023-02-13 /pmc/articles/PMC10108258/ /pubmed/36538473 http://dx.doi.org/10.1002/anie.202217186 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Wu, Yi‐Hsuan
Mehta, Harshit
Willinger, Elena
Yuwono, Jodie A.
Kumar, Priyank V.
Abdala, Paula M.
Wach, Anna
Kierzkowska, Agnieszka
Donat, Felix
Kuznetsov, Denis A.
Müller, Christoph R.
Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System
title Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System
title_full Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System
title_fullStr Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System
title_full_unstemmed Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System
title_short Altering Oxygen Binding by Redox‐Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System
title_sort altering oxygen binding by redox‐inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108258/
https://www.ncbi.nlm.nih.gov/pubmed/36538473
http://dx.doi.org/10.1002/anie.202217186
work_keys_str_mv AT wuyihsuan alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT mehtaharshit alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT willingerelena alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT yuwonojodiea alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT kumarpriyankv alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT abdalapaulam alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT wachanna alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT kierzkowskaagnieszka alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT donatfelix alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT kuznetsovdenisa alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem
AT mullerchristophr alteringoxygenbindingbyredoxinactivemetalsubstitutiontocontrolcatalyticactivityoxygenreductiononmanganeseoxidenanoparticlesasamodelsystem