Cargando…
Facilitating deep learning through preprocessing of optical coherence tomography images
BACKGROUND: While deep learning has delivered promising results in the field of ophthalmology, the hurdle to complete a deep learning study is high. In this study, we aim to facilitate small scale model trainings by exploring the role of preprocessing to reduce computational burden and accelerate le...
Autores principales: | Li, Anfei, Winebrake, James P, Kovacs, Kyle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108538/ https://www.ncbi.nlm.nih.gov/pubmed/37069534 http://dx.doi.org/10.1186/s12886-023-02916-2 |
Ejemplares similares
-
Deep learning for quality assessment of optical coherence tomography angiography images
por: Dhodapkar, Rahul M., et al.
Publicado: (2022) -
Application of Deep Learning Methods for Binarization of the Choroid in Optical Coherence Tomography Images
por: Muller, Joshua, et al.
Publicado: (2022) -
Identification of coronary calcifications in optical coherence tomography imaging using deep learning
por: Avital, Yarden, et al.
Publicado: (2021) -
Enhanced Deep Learning Model for Classification of Retinal Optical Coherence Tomography Images
por: Hassan, Esraa, et al.
Publicado: (2023) -
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head
por: Devalla, Sripad Krishna, et al.
Publicado: (2019)