Cargando…
The contribution of theta and delta to feedback processing in children with developmental language disorder
PURPOSE: The study aimed at evaluating feedback processing at the electrophysiological level and its relation to learning in children with developmental language disorder (DLD) to further advance our understanding of the underlying neural mechanisms of feedback-based learning in children with this d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108548/ https://www.ncbi.nlm.nih.gov/pubmed/37069567 http://dx.doi.org/10.1186/s11689-023-09481-1 |
Sumario: | PURPOSE: The study aimed at evaluating feedback processing at the electrophysiological level and its relation to learning in children with developmental language disorder (DLD) to further advance our understanding of the underlying neural mechanisms of feedback-based learning in children with this disorder. METHOD: A feedback-based probabilistic learning task required children to classify novel cartoon animals into two categories that differ on five binary features, the probabilistic combination of which determined classification. The learning outcomes’ variance in relation to time- and time–frequency measures of feedback processing were examined and compared between 20 children with developmental language disorder and 25 age-matched children with typical language development. RESULTS: Children with developmental language disorder (DLD) performed poorer on the task when compared with their age-matched peers with typical language development (TD). The electrophysiological data in the time domain indicated no differences in the processing of positive and negative feedback among children with DLD. However, the time–frequency analysis revealed a strong theta activity in response to negative feedback in this group, suggesting an initial distinction between positive and negative feedback that was not captured by the ERP data. In the TD group, delta activity played a major role in shaping the FRN and P3a and was found to predict test performance. Delta did not contribute to the FRN and P3a in the DLD group. Additionally, theta and delta activities were not associated with the learning outcomes of children with DLD. CONCLUSION: Theta activity, which is associated with the initial processing of feedback at the level of the anterior cingulate cortex, was detected in children with developmental language disorder (DLD) but was not associated with their learning outcomes. Delta activity, which is assumed to be generated by the striatum and to be linked to elaborate processing of outcomes and adjustment of future actions, contributed to processing and learning outcomes of children with typical language development but not of children with DLD. The results provide evidence for atypical striatum-based feedback processing in children with DLD. |
---|