Cargando…
A Hybrid System for Automatic Identification of Corneal Layers on In Vivo Confocal Microscopy Images
PURPOSE: Accurate identification of corneal layers with in vivo confocal microscopy (IVCM) is essential for the correct assessment of corneal lesions. This project aims to obtain a reliable automated identification of corneal layers from IVCM images. METHODS: A total of 7957 IVCM images were include...
Autores principales: | Tang, Ningning, Huang, Guangyi, Lei, Daizai, Jiang, Li, Chen, Qi, He, Wenjing, Tang, Fen, Hong, Yiyi, Lv, Jian, Qin, Yuanjun, Lin, Yunru, Lan, Qianqian, Qin, Yikun, Lan, Rushi, Pan, Xipeng, Li, Min, Xu, Fan, Lu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108728/ https://www.ncbi.nlm.nih.gov/pubmed/37026984 http://dx.doi.org/10.1167/tvst.12.4.8 |
Ejemplares similares
-
The Clinical Value of Explainable Deep Learning for Diagnosing Fungal Keratitis Using in vivo Confocal Microscopy Images
por: Xu, Fan, et al.
Publicado: (2021) -
A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images
por: Xu, Fan, et al.
Publicado: (2021) -
AI-Based Decision-Support System for Diagnosing Acanthamoeba Keratitis Using In Vivo Confocal Microscopy Images
por: Lincke, Alisa, et al.
Publicado: (2023) -
Automatic configuration of the Cassandra database using irace
por: Silva-Muñoz, Moisés, et al.
Publicado: (2021) -
Automatic Artifact Detection Algorithm in Fetal MRI
por: Lim, Adam, et al.
Publicado: (2022)