Cargando…
P137 Deep learning enables accurate automatic sleep stage classification in a clinical paediatric population
INTRODUCTION: Sleep disorders are widespread in children and associated with a myriad of detrimental health sequelae. Accurate identification of sleep stages is crucial in diagnosing various sleep disorders; however, manual sleep stage scoring can be subjective, laborious, and costly. To tackle thes...
Autores principales: | Somaskandhan, P, Korkalainen, H, Terrill, P, Sigurðardóttir, S, Arnardóttir, E, Ólafsdóttir, K, Clausen, M, Töyräs, J, Leppänen, T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109032/ http://dx.doi.org/10.1093/sleepadvances/zpab014.178 |
Ejemplares similares
-
Deep learning-based algorithm accurately classifies sleep stages in preadolescent children with sleep-disordered breathing symptoms and age-matched controls
por: Somaskandhan, Pranavan, et al.
Publicado: (2023) -
STAR sleep recording export software for automatic export and anonymization of sleep studies
por: Nikkonen, Sami, et al.
Publicado: (2022) -
P113 A detailed analysis of multicentric sleep staging inter-rater variabilities
por: Somaskandhan, P, et al.
Publicado: (2022) -
P020 Reduced duration and continuity of N3 sleep is associated with excessive daytime sleepiness in suspected obstructive sleep apnea patients
por: Chen, X, et al.
Publicado: (2021) -
O029 Sleep architecture differs for individuals manifesting excessive daytime sleepiness with and without obstructive sleep apnea
por: Chen, X, et al.
Publicado: (2022)