Cargando…

P060 Hypoxia-induced overexpression of Rev-Erb-alpha and NPAS2 proteins in obstructive sleep apnea patients - possible mechanism of DM2 development

Circadian clocks are endogenous coordinators of 24-hour behavioral and molecular rhythms, which disruption may be caused by obstructive sleep apnea (OSA). It is composed of a set of genes, function as activators (CLOCK, BMAL) or repressors (PER, CRY). Neuronal PAS Domain Protein 2 (NPAS2) can substi...

Descripción completa

Detalles Bibliográficos
Autores principales: Karuga, F, Turkiewicz, S, Ditmer, M, Sochal, M, Białasiewicz, P, Gabryelska, A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109280/
http://dx.doi.org/10.1093/sleepadvances/zpab014.106
Descripción
Sumario:Circadian clocks are endogenous coordinators of 24-hour behavioral and molecular rhythms, which disruption may be caused by obstructive sleep apnea (OSA). It is composed of a set of genes, function as activators (CLOCK, BMAL) or repressors (PER, CRY). Neuronal PAS Domain Protein 2 (NPAS2) can substitute CLOCK in its function. Orphan nuclear receptor (Rev-Erb-α) is another protein supporting the CLOCK-BMAL1 complex, forming the loop which helps to regulate their expression. There are studies suggesting the significant influence of circadian disruption mediated via NPAS2 and Rev-Erb-α on DM2 development. The aim of the study was to determine the role of NPAS2 and Rev-Erb-α in DM2 for OSA patients. All participants underwent polysomnography (PSG) examination. Based on apnea-hypopnea index accompanied by clinical data the recruited individuals (n=40) were assigned to one from 3 groups: OSA (severe OSA, no DM2; n=17), DM2 (severe OSA + DM2; n=7) and control group (no OSA, no DM2; n=16). Serum protein levels of Rev-Erb-α and NPAS2 were assessed with ELISA immunoassay. Analysis between the groups revealed the statistically significant difference only in NPAS2 protein level (p=0.037). Further post-hoc analysis revealed significant differences between OSA and the control group (p=0.017). Moreover, a statistically significant correlation between AHI and NPAS2 serum protein level was observed (r=-0.478, p=0.002). NPAS2 protein levels are associated with a number of apneas and hypopneas during the REM phase of sleep and might have a significant role in the development of OSA complications. However, further studies are needed to understand its role.