Cargando…
Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements
Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109471/ https://www.ncbi.nlm.nih.gov/pubmed/37018378 http://dx.doi.org/10.1371/journal.pcbi.1011038 |
_version_ | 1785027074813067264 |
---|---|
author | Garcia-Alles, Luis F. Fuentes-Cabrera, Miguel Truan, Gilles Reguera, David |
author_facet | Garcia-Alles, Luis F. Fuentes-Cabrera, Miguel Truan, Gilles Reguera, David |
author_sort | Garcia-Alles, Luis F. |
collection | PubMed |
description | Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewed as prototype nano-reactors for biotechnological applications. Herein, we undertook a comparative study of bending propensities of BMC hexamers (BMC-H), the most abundant shell constituents. Published data show that some BMC-H, like β-carboxysomal CcmK, tend to assemble flat whereas other BMC-H often build curved objects. Inspection of available crystal structures presenting BMC-H in tiled arrangements permitted us to identify two major assembly modes with a striking connection with experimental trends. All-atom molecular dynamics (MD) supported that BMC-H bending is triggered robustly only from the arrangement adopted in crystals by BMC-H that experimentally form curved objects, leading to very similar arrangements to those found in structures of recomposed BMC shells. Simulations on triplets of planar-behaving hexamers, which were previously reconfigured to comply with such organization, confirmed that bending propensity is mostly defined by the precise lateral positioning of hexamers, rather than by BMC-H identity. Finally, an interfacial lysine was pinpointed as the most decisive residue in controlling PduA spontaneous curvature. Globally, results presented herein should contribute to improve our understanding of the variable mechanisms of biogenesis characterized for BMC, and of possible strategies to regulate BMC size and shape. |
format | Online Article Text |
id | pubmed-10109471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-101094712023-04-18 Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements Garcia-Alles, Luis F. Fuentes-Cabrera, Miguel Truan, Gilles Reguera, David PLoS Comput Biol Research Article Bacterial microcompartments (BMC) are complex macromolecular assemblies that participate in varied chemical processes in about one fourth of bacterial species. BMC-encapsulated enzymatic activities are segregated from other cell contents by means of semipermeable shells, justifying why BMC are viewed as prototype nano-reactors for biotechnological applications. Herein, we undertook a comparative study of bending propensities of BMC hexamers (BMC-H), the most abundant shell constituents. Published data show that some BMC-H, like β-carboxysomal CcmK, tend to assemble flat whereas other BMC-H often build curved objects. Inspection of available crystal structures presenting BMC-H in tiled arrangements permitted us to identify two major assembly modes with a striking connection with experimental trends. All-atom molecular dynamics (MD) supported that BMC-H bending is triggered robustly only from the arrangement adopted in crystals by BMC-H that experimentally form curved objects, leading to very similar arrangements to those found in structures of recomposed BMC shells. Simulations on triplets of planar-behaving hexamers, which were previously reconfigured to comply with such organization, confirmed that bending propensity is mostly defined by the precise lateral positioning of hexamers, rather than by BMC-H identity. Finally, an interfacial lysine was pinpointed as the most decisive residue in controlling PduA spontaneous curvature. Globally, results presented herein should contribute to improve our understanding of the variable mechanisms of biogenesis characterized for BMC, and of possible strategies to regulate BMC size and shape. Public Library of Science 2023-04-05 /pmc/articles/PMC10109471/ /pubmed/37018378 http://dx.doi.org/10.1371/journal.pcbi.1011038 Text en © 2023 Garcia-Alles et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Garcia-Alles, Luis F. Fuentes-Cabrera, Miguel Truan, Gilles Reguera, David Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
title | Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
title_full | Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
title_fullStr | Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
title_full_unstemmed | Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
title_short | Inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
title_sort | inferring assembly-curving trends of bacterial micro-compartment shell hexamers from crystal structure arrangements |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109471/ https://www.ncbi.nlm.nih.gov/pubmed/37018378 http://dx.doi.org/10.1371/journal.pcbi.1011038 |
work_keys_str_mv | AT garciaallesluisf inferringassemblycurvingtrendsofbacterialmicrocompartmentshellhexamersfromcrystalstructurearrangements AT fuentescabreramiguel inferringassemblycurvingtrendsofbacterialmicrocompartmentshellhexamersfromcrystalstructurearrangements AT truangilles inferringassemblycurvingtrendsofbacterialmicrocompartmentshellhexamersfromcrystalstructurearrangements AT regueradavid inferringassemblycurvingtrendsofbacterialmicrocompartmentshellhexamersfromcrystalstructurearrangements |