Cargando…
A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats
Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109488/ https://www.ncbi.nlm.nih.gov/pubmed/37018374 http://dx.doi.org/10.1371/journal.pntd.0011234 |
_version_ | 1785027079038828544 |
---|---|
author | Zhao, Serena Y. Hughes, Grant L. Coon, Kerri L. |
author_facet | Zhao, Serena Y. Hughes, Grant L. Coon, Kerri L. |
author_sort | Zhao, Serena Y. |
collection | PubMed |
description | Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti–a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity. |
format | Online Article Text |
id | pubmed-10109488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-101094882023-04-18 A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats Zhao, Serena Y. Hughes, Grant L. Coon, Kerri L. PLoS Negl Trop Dis Research Article Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti–a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity. Public Library of Science 2023-04-05 /pmc/articles/PMC10109488/ /pubmed/37018374 http://dx.doi.org/10.1371/journal.pntd.0011234 Text en © 2023 Zhao et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhao, Serena Y. Hughes, Grant L. Coon, Kerri L. A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
title | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
title_full | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
title_fullStr | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
title_full_unstemmed | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
title_short | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
title_sort | cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109488/ https://www.ncbi.nlm.nih.gov/pubmed/37018374 http://dx.doi.org/10.1371/journal.pntd.0011234 |
work_keys_str_mv | AT zhaoserenay acryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT hughesgrantl acryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT coonkerril acryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT zhaoserenay cryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT hughesgrantl cryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT coonkerril cryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats |