Cargando…
Plasmacytoid dendritic cells stimulated with Lactococcus lactis strain Plasma produce soluble factors to suppress SARS-CoV-2 replication
Innate immune responses are important in the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. We have previously found a lactic acid bacteria species, Lactococcus lactis strain Plasma (LC-Plasma), which possesses specific feature to activate plasmacytoid dendritic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110276/ https://www.ncbi.nlm.nih.gov/pubmed/37094430 http://dx.doi.org/10.1016/j.bbrc.2023.04.046 |
Sumario: | Innate immune responses are important in the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. We have previously found a lactic acid bacteria species, Lactococcus lactis strain Plasma (LC-Plasma), which possesses specific feature to activate plasmacytoid dendritic cells (pDCs) and thus may affect innate immune responses. Here, we investigated the impact of pDC activation by LC-Plasma on SARS-CoV-2 replication in vitro. Addition of the culture supernatant of pDCs stimulated with LC-Plasma resulted in suppression of SARS-CoV-2 replication in Vero and Calu-3 cells. We confirmed interferon-α (IFN-α) secretion in the supernatant of pDCs stimulated with LC-Plasma and induction of IFN-stimulated genes in cells treated with the pDC supernatant. Anti–IFN–α antibody impaired the suppression of SARS-CoV-2 replication by the supernatant of LC-Plasma-stimulated pDCs, suggesting that IFN-α plays an important role in the SARS-CoV-2 suppression. Our results indicate the potential of LC-Plasma to induce inhibitory responses against SARS-CoV-2 replication through pDC stimulation with IFN-α secretion. |
---|