Cargando…

Effect of Rosa damascena Extract on Rat Model Alzheimer's Disease: A Histopathological, Behavioral, Enzyme Activities, and Oxidative Stress Study

The purpose of the current study is to investigate the effect of aquatic Rosa damascena extract against the oxidative damage induced by aluminum chloride intoxication in Alzheimer's model of Wister rats. Rats were divided randomly into seven groups (n = 10). Control group received no treatment,...

Descripción completa

Detalles Bibliográficos
Autores principales: Beigom Hejaziyan, Leila, Hosseini, Seyed Mohammad, Taravati, Ali, Asadi, Mohammad, Bakhshi, Mahyar, Moshaei Nezhad, Pedram, Gol, Mohammad, Mououdi, Mobina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110374/
https://www.ncbi.nlm.nih.gov/pubmed/37078068
http://dx.doi.org/10.1155/2023/4926151
Descripción
Sumario:The purpose of the current study is to investigate the effect of aquatic Rosa damascena extract against the oxidative damage induced by aluminum chloride intoxication in Alzheimer's model of Wister rats. Rats were divided randomly into seven groups (n = 10). Control group received no treatment, sham group received distilled water orally, aluminum group (AL) was administered AlCl(3) (100 mg/kg) orally, extract 1 and 2 groups were treated with only aqueous R. damascena extract (DRE) (500 and 1000 mg/kg), and treatment 1 and 2 groups received aqueous R. damascena extract (500 and 1000 mg/kg) and AlCl(3) (100 mg/kg) orally. The brain tissues were sampled for histopathological examination, and biochemical analysis was conducted for estimating the enzyme activities of acetylcholinesterase and catalase (CAT), the levels of GSH and MDA, and ferric reducing antioxidant power. According to the results of behavioral tests, AL administration showed a reduction in spatial memory and remarkably increased the time needed for reaching the invisible platform. The administration of Al-induced oxidative stress and an increase of the enzyme activity of AChE. Al administration increased AChE level from 1.176 ± 0.173 to 3.62 ± 0.348, which was a significant rise. However, treating with the extract at the dose of 1000 mg/kg downregulated it to 1.56 ± 0.303. Administration of the R. damascene extract caused an increased level of catalase and glutathione levels in treatment groups, attenuated MDA level, and regulated AChE activity. Our results illustrate that administration of R. damascene extract has a protective effect against the oxidative damage induced by AlCl(3) intoxication in Alzheimer's model.