Cargando…

Multiple interactions of the dynein-2 complex with the IFT-B complex are required for effective intraflagellar transport

The dynein-2 complex must be transported anterogradely within cilia to then drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Here, we screened for potential interactions between the dynein-2 and IFT-B complexes and found multiple inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Hiyamizu, Shunya, Qiu, Hantian, Vuolo, Laura, Stevenson, Nicola L., Shak, Caroline, Heesom, Kate J., Hamada, Yuki, Tsurumi, Yuta, Chiba, Shuhei, Katoh, Yohei, Stephens, David J., Nakayama, Kazuhisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110421/
https://www.ncbi.nlm.nih.gov/pubmed/36632779
http://dx.doi.org/10.1242/jcs.260462
Descripción
Sumario:The dynein-2 complex must be transported anterogradely within cilia to then drive retrograde trafficking of the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes. Here, we screened for potential interactions between the dynein-2 and IFT-B complexes and found multiple interactions among the dynein-2 and IFT-B subunits. In particular, WDR60 (also known as DYNC2I1) and the DYNC2H1–DYNC2LI1 dimer from dynein-2, and IFT54 (also known as TRAF3IP1) and IFT57 from IFT-B contribute to the dynein-2–IFT-B interactions. WDR60 interacts with IFT54 via a conserved region N-terminal to its light chain-binding regions. Expression of the WDR60 constructs in WDR60-knockout (KO) cells revealed that N-terminal truncation mutants lacking the IFT54-binding site fail to rescue abnormal phenotypes of WDR60-KO cells, such as aberrant accumulation of the IFT machinery around the ciliary tip and on the distal side of the transition zone. However, a WDR60 construct specifically lacking just the IFT54-binding site substantially restored the ciliary defects. In line with the current docking model of dynein-2 with the anterograde IFT trains, these results indicate that extensive interactions involving multiple subunits from the dynein-2 and IFT-B complexes participate in their connection.