Cargando…
Random fractal-enabled physical unclonable functions with dynamic AI authentication
A physical unclonable function (PUF) is a foundation of anti-counterfeiting processes due to its inherent uniqueness. However, the self-limitation of conventional graphical/spectral PUFs in materials often makes it difficult to have both high code flexibility and high environmental stability in prac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110537/ https://www.ncbi.nlm.nih.gov/pubmed/37069144 http://dx.doi.org/10.1038/s41467-023-37588-5 |
Sumario: | A physical unclonable function (PUF) is a foundation of anti-counterfeiting processes due to its inherent uniqueness. However, the self-limitation of conventional graphical/spectral PUFs in materials often makes it difficult to have both high code flexibility and high environmental stability in practice. In this study, we propose a universal, fractal-guided film annealing strategy to realize the random Au network-based PUFs that can be designed on demand in complexity, enabling the tags’ intrinsic uniqueness and stability. A dynamic deep learning-based authentication system with an expandable database is built to identify and trace the PUFs, achieving an efficient and reliable authentication with 0% “false positives”. Based on the roughening-enabled plasmonic network platform, Raman-based chemical encoding is conceptionally demonstrated, showing the potential for improvements in security. The configurable tags in mass production can serve as competitive PUF carriers for high-level anti-counterfeiting and data encryption. |
---|