Cargando…
A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest X-rays
Building a reliable and precise model for disease classification and identifying abnormal sites can provide physicians assistance in their decision-making process. Deep learning based image analysis is a promising technique for enriching the decision making process, and accordingly strengthening pat...
Autores principales: | Innat, Mohammed, Hossain, Md. Faruque, Mader, Kevin, Kouzani, Abbas Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110554/ https://www.ncbi.nlm.nih.gov/pubmed/37069168 http://dx.doi.org/10.1038/s41598-023-32611-7 |
Ejemplares similares
-
Hybrid Classical–Quantum Transfer Learning for Cardiomegaly Detection in Chest X-rays
por: Decoodt, Pierre, et al.
Publicado: (2023) -
Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
por: Thiam, Patrick, et al.
Publicado: (2023) -
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
por: Rammuni Silva, Ravidu Suien, et al.
Publicado: (2022) -
High-Resolution Network with Dynamic Convolution and Coordinate Attention for Classification of Chest X-ray Images
por: Li, Qiang, et al.
Publicado: (2023)