Cargando…
Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP
Chronic kidney disease (CKD) is a condition distinguished by structural and functional changes to the kidney over time. Studies show that 10% of adults worldwide are affected by some kind of CKD, resulting in 1.2 million deaths. Recently, CKD has emerged as a leading cause of mortality worldwide, ma...
Autores principales: | Raihan, Md. Johir, Khan, Md. Al-Masrur, Kee, Seong-Hoon, Nahid, Abdullah-Al |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110580/ https://www.ncbi.nlm.nih.gov/pubmed/37069256 http://dx.doi.org/10.1038/s41598-023-33525-0 |
Ejemplares similares
-
Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction
por: Tarabanis, Constantine, et al.
Publicado: (2023) -
A Modified Aquila-Based Optimized XGBoost Framework for Detecting Probable Seizure Status in Neonates
por: Mumenin, Khondoker Mirazul, et al.
Publicado: (2023) -
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
por: Yi, Fuliang, et al.
Publicado: (2023) -
Interpretable predictive model for shield attitude control performance based on XGboost and SHAP
por: Hu, Min, et al.
Publicado: (2022) -
Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate
por: Jovanovic, Gordana, et al.
Publicado: (2023)