Cargando…

Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy

Accurate prediction of new baseline GFR (NBGFR) after radical nephrectomy (RN) can inform clinical management and patient counseling whenever RN is a strong consideration. Preoperative global GFR, split renal function (SRF), and renal functional compensation (RFC) are fundamentally important for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Rathi, Nityam, Attawettayanon, Worapat, Yasuda, Yosuke, Lewis, Kieran, Roversi, Gustavo, Shah, Snehi, Wood, Andrew, Munoz-Lopez, Carlos, Palacios, Diego A., Li, Jianbo, Abdallah, Nour, Schober, Jared P., Strother, Marshall, Kutikov, Alexander, Uzzo, Robert, Weight, Christopher J., Eltemamy, Mohamed, Krishnamurthi, Venkatesh, Abouassaly, Robert, Campbell, Steven C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110585/
https://www.ncbi.nlm.nih.gov/pubmed/37069196
http://dx.doi.org/10.1038/s41598-023-33236-6
_version_ 1785027291325136896
author Rathi, Nityam
Attawettayanon, Worapat
Yasuda, Yosuke
Lewis, Kieran
Roversi, Gustavo
Shah, Snehi
Wood, Andrew
Munoz-Lopez, Carlos
Palacios, Diego A.
Li, Jianbo
Abdallah, Nour
Schober, Jared P.
Strother, Marshall
Kutikov, Alexander
Uzzo, Robert
Weight, Christopher J.
Eltemamy, Mohamed
Krishnamurthi, Venkatesh
Abouassaly, Robert
Campbell, Steven C.
author_facet Rathi, Nityam
Attawettayanon, Worapat
Yasuda, Yosuke
Lewis, Kieran
Roversi, Gustavo
Shah, Snehi
Wood, Andrew
Munoz-Lopez, Carlos
Palacios, Diego A.
Li, Jianbo
Abdallah, Nour
Schober, Jared P.
Strother, Marshall
Kutikov, Alexander
Uzzo, Robert
Weight, Christopher J.
Eltemamy, Mohamed
Krishnamurthi, Venkatesh
Abouassaly, Robert
Campbell, Steven C.
author_sort Rathi, Nityam
collection PubMed
description Accurate prediction of new baseline GFR (NBGFR) after radical nephrectomy (RN) can inform clinical management and patient counseling whenever RN is a strong consideration. Preoperative global GFR, split renal function (SRF), and renal functional compensation (RFC) are fundamentally important for the accurate prediction of NBGFR post-RN. While SRF has traditionally been obtained from nuclear renal scans (NRS), differential parenchymal volume analysis (PVA) via software analysis may be more accurate. A simplified approach to estimate parenchymal volumes and SRF based on length/width/height measurements (LWH) has also been proposed. We compare the accuracies of these three methods for determining SRF, and, by extension, predicting NBGFR after RN. All 235 renal cancer patients managed with RN (2006–2021) with available preoperative CT/MRI and NRS, and relevant functional data were analyzed. PVA was performed on CT/MRI using semi-automated software, and LWH measurements were obtained from CT/MRI images. RFC was presumed to be 25%, and thus: Predicted NBGFR = 1.25 × Global GFR(Pre-RN) × SRF(Contralateral). Predictive accuracies were assessed by mean squared error (MSE) and correlation coefficients (r). The r values for the LWH/NRS/software-derived PVA approaches were 0.72/0.71/0.86, respectively (p < 0.05). The PVA-based approach also had the most favorable MSE, which were 120/126/65, respectively (p < 0.05). Our data show that software-derived PVA provides more accurate and precise SRF estimations and predictions of NBGFR post-RN than NRS/LWH methods. Furthermore, the LWH approach is equivalent to NRS, precluding the need for NRS in most patients.
format Online
Article
Text
id pubmed-10110585
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101105852023-04-19 Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy Rathi, Nityam Attawettayanon, Worapat Yasuda, Yosuke Lewis, Kieran Roversi, Gustavo Shah, Snehi Wood, Andrew Munoz-Lopez, Carlos Palacios, Diego A. Li, Jianbo Abdallah, Nour Schober, Jared P. Strother, Marshall Kutikov, Alexander Uzzo, Robert Weight, Christopher J. Eltemamy, Mohamed Krishnamurthi, Venkatesh Abouassaly, Robert Campbell, Steven C. Sci Rep Article Accurate prediction of new baseline GFR (NBGFR) after radical nephrectomy (RN) can inform clinical management and patient counseling whenever RN is a strong consideration. Preoperative global GFR, split renal function (SRF), and renal functional compensation (RFC) are fundamentally important for the accurate prediction of NBGFR post-RN. While SRF has traditionally been obtained from nuclear renal scans (NRS), differential parenchymal volume analysis (PVA) via software analysis may be more accurate. A simplified approach to estimate parenchymal volumes and SRF based on length/width/height measurements (LWH) has also been proposed. We compare the accuracies of these three methods for determining SRF, and, by extension, predicting NBGFR after RN. All 235 renal cancer patients managed with RN (2006–2021) with available preoperative CT/MRI and NRS, and relevant functional data were analyzed. PVA was performed on CT/MRI using semi-automated software, and LWH measurements were obtained from CT/MRI images. RFC was presumed to be 25%, and thus: Predicted NBGFR = 1.25 × Global GFR(Pre-RN) × SRF(Contralateral). Predictive accuracies were assessed by mean squared error (MSE) and correlation coefficients (r). The r values for the LWH/NRS/software-derived PVA approaches were 0.72/0.71/0.86, respectively (p < 0.05). The PVA-based approach also had the most favorable MSE, which were 120/126/65, respectively (p < 0.05). Our data show that software-derived PVA provides more accurate and precise SRF estimations and predictions of NBGFR post-RN than NRS/LWH methods. Furthermore, the LWH approach is equivalent to NRS, precluding the need for NRS in most patients. Nature Publishing Group UK 2023-04-17 /pmc/articles/PMC10110585/ /pubmed/37069196 http://dx.doi.org/10.1038/s41598-023-33236-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Rathi, Nityam
Attawettayanon, Worapat
Yasuda, Yosuke
Lewis, Kieran
Roversi, Gustavo
Shah, Snehi
Wood, Andrew
Munoz-Lopez, Carlos
Palacios, Diego A.
Li, Jianbo
Abdallah, Nour
Schober, Jared P.
Strother, Marshall
Kutikov, Alexander
Uzzo, Robert
Weight, Christopher J.
Eltemamy, Mohamed
Krishnamurthi, Venkatesh
Abouassaly, Robert
Campbell, Steven C.
Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
title Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
title_full Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
title_fullStr Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
title_full_unstemmed Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
title_short Point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
title_sort point of care parenchymal volume analyses to estimate split renal function and predict functional outcomes after radical nephrectomy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110585/
https://www.ncbi.nlm.nih.gov/pubmed/37069196
http://dx.doi.org/10.1038/s41598-023-33236-6
work_keys_str_mv AT rathinityam pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT attawettayanonworapat pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT yasudayosuke pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT lewiskieran pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT roversigustavo pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT shahsnehi pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT woodandrew pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT munozlopezcarlos pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT palaciosdiegoa pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT lijianbo pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT abdallahnour pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT schoberjaredp pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT strothermarshall pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT kutikovalexander pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT uzzorobert pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT weightchristopherj pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT eltemamymohamed pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT krishnamurthivenkatesh pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT abouassalyrobert pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy
AT campbellstevenc pointofcareparenchymalvolumeanalysestoestimatesplitrenalfunctionandpredictfunctionaloutcomesafterradicalnephrectomy