Cargando…

Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat

Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasudevan, Akshaya, Lévesque-Lemay, Madeleine, Edwards, Tara, Cloutier, Sylvie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110605/
https://www.ncbi.nlm.nih.gov/pubmed/37069312
http://dx.doi.org/10.1038/s42003-023-04781-7
Descripción
Sumario:Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.