Cargando…
Epileptic prediction using spatiotemporal information combined with optimal features strategy on EEG
OBJECTIVE: Epilepsy is the second most common brain neurological disease after stroke, which has the characteristics of sudden and recurrence. Seizure prediction is seriously important for improving the quality of patients’ lives. METHODS: From the perspective of multiple dimensions including time-f...
Autores principales: | Zhong, Lisha, Wan, Jiangzhong, Yi, Fangji, He, Shuling, Wu, Jia, Huang, Zhiwei, Lu, Yi, Yang, Jiazhang, Li, Zhangyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111052/ https://www.ncbi.nlm.nih.gov/pubmed/37081931 http://dx.doi.org/10.3389/fnins.2023.1174005 |
Ejemplares similares
-
Temporal and spatial dynamic propagation of electroencephalogram by combining power spectral and synchronization in childhood absence epilepsy
por: Zhong, Lisha, et al.
Publicado: (2022) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
por: Dastgoshadeh, Mahshid, et al.
Publicado: (2023)