Cargando…
Independent Component Analysis with Functional Neuroscience Data Analysis
BACKGROUND: Independent Component Analysis (ICA) is the most common and standard technique used in functional neuroscience data analysis. OBJECTIVE: In this study, two of the significant functional brain techniques are introduced as a model for neuroscience data analysis. MATERIAL AND METHODS: In th...
Autor principal: | Aljobouri, Hadeel K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shiraz University of Medical Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111109/ https://www.ncbi.nlm.nih.gov/pubmed/37082550 http://dx.doi.org/10.31661/jbpe.v0i0.2111-1436 |
Ejemplares similares
-
The Development and Analysis of Integrated Neuroscience Data
por: Glaser, Joshua I., et al.
Publicado: (2016) -
Removing independent noise in systems neuroscience data using DeepInterpolation
por: Lecoq, Jérôme, et al.
Publicado: (2021) -
Extracting Conditionally Heteroskedastic Components using Independent Component Analysis
por: Miettinen, Jari, et al.
Publicado: (2019) -
Pynapple, a toolbox for data analysis in neuroscience
por: Viejo, Guillaume, et al.
Publicado: (2023) -
NSDF: Neuroscience Simulation Data Format
por: Ray, Subhasis, et al.
Publicado: (2015)