Cargando…

Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China

Seed dormancy contributes greatly to successful establishment and community stability and shows large variation over a continuous status scale in mountain ecosystems. Although empirical studies have shown that seed dormancy status (SDS) is shaped by elevation and phylogenetic history in mountain eco...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kai, Chen, Zi‐Hong, Huang, Yuan‐Yuan, Jiang, Zhong‐Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111168/
https://www.ncbi.nlm.nih.gov/pubmed/37082323
http://dx.doi.org/10.1002/ece3.9986
_version_ 1785027403761844224
author Chen, Kai
Chen, Zi‐Hong
Huang, Yuan‐Yuan
Jiang, Zhong‐Hua
author_facet Chen, Kai
Chen, Zi‐Hong
Huang, Yuan‐Yuan
Jiang, Zhong‐Hua
author_sort Chen, Kai
collection PubMed
description Seed dormancy contributes greatly to successful establishment and community stability and shows large variation over a continuous status scale in mountain ecosystems. Although empirical studies have shown that seed dormancy status (SDS) is shaped by elevation and phylogenetic history in mountain ecosystems, few studies have quantified their combined effects on SDS. Here, we collected mature seeds from 51 populations of 11 Impatiens species (Balsaminaceae) along an elevational gradient in the Gaoligong Mountains of southwest China and estimated SDS using mean dormancy percentage of fresh seeds germinated at three constant temperatures (15, 20, and 25°C). We downloaded 19 bioclimatic variables from WorldClim v.2.1 for each Impatiens population and used internal transcribed spacer (ITS), atpB‐rbcL, and trnL‐F molecular sequences from the GenBank nucleotide database to construct a phylogenetic tree of the 11 species of Impatiens. Logistic regression model analysis was performed to quantify the effects of phylogeny and environment on SDS. Results identified a significant phylogenetic SDS signal in the Impatiens species. Furthermore, elevation and phylogeny accounted for 63.629% of the total variation in SDS among the Impatiens populations. The best logistic model indicated that temperature was the main factor influencing variation in SDS among the Impatiens species, and model residuals were significantly correlated with phylogeny, but not with elevation. Our results indicated that seed dormancy is phylogenetically conserved, and climate drives elevational patterns of SDS variation in mountain ecosystems. This study provides new insights into the response of seed plant diversity to climate change.
format Online
Article
Text
id pubmed-10111168
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-101111682023-04-19 Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China Chen, Kai Chen, Zi‐Hong Huang, Yuan‐Yuan Jiang, Zhong‐Hua Ecol Evol Research Articles Seed dormancy contributes greatly to successful establishment and community stability and shows large variation over a continuous status scale in mountain ecosystems. Although empirical studies have shown that seed dormancy status (SDS) is shaped by elevation and phylogenetic history in mountain ecosystems, few studies have quantified their combined effects on SDS. Here, we collected mature seeds from 51 populations of 11 Impatiens species (Balsaminaceae) along an elevational gradient in the Gaoligong Mountains of southwest China and estimated SDS using mean dormancy percentage of fresh seeds germinated at three constant temperatures (15, 20, and 25°C). We downloaded 19 bioclimatic variables from WorldClim v.2.1 for each Impatiens population and used internal transcribed spacer (ITS), atpB‐rbcL, and trnL‐F molecular sequences from the GenBank nucleotide database to construct a phylogenetic tree of the 11 species of Impatiens. Logistic regression model analysis was performed to quantify the effects of phylogeny and environment on SDS. Results identified a significant phylogenetic SDS signal in the Impatiens species. Furthermore, elevation and phylogeny accounted for 63.629% of the total variation in SDS among the Impatiens populations. The best logistic model indicated that temperature was the main factor influencing variation in SDS among the Impatiens species, and model residuals were significantly correlated with phylogeny, but not with elevation. Our results indicated that seed dormancy is phylogenetically conserved, and climate drives elevational patterns of SDS variation in mountain ecosystems. This study provides new insights into the response of seed plant diversity to climate change. John Wiley and Sons Inc. 2023-04-18 /pmc/articles/PMC10111168/ /pubmed/37082323 http://dx.doi.org/10.1002/ece3.9986 Text en © 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Chen, Kai
Chen, Zi‐Hong
Huang, Yuan‐Yuan
Jiang, Zhong‐Hua
Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China
title Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China
title_full Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China
title_fullStr Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China
title_full_unstemmed Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China
title_short Elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest China
title_sort elevation and phylogeny shape herbaceous seed dormancy in a biodiversity hotspot of southwest china
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111168/
https://www.ncbi.nlm.nih.gov/pubmed/37082323
http://dx.doi.org/10.1002/ece3.9986
work_keys_str_mv AT chenkai elevationandphylogenyshapeherbaceousseeddormancyinabiodiversityhotspotofsouthwestchina
AT chenzihong elevationandphylogenyshapeherbaceousseeddormancyinabiodiversityhotspotofsouthwestchina
AT huangyuanyuan elevationandphylogenyshapeherbaceousseeddormancyinabiodiversityhotspotofsouthwestchina
AT jiangzhonghua elevationandphylogenyshapeherbaceousseeddormancyinabiodiversityhotspotofsouthwestchina