Cargando…
Identification of immunotherapy-related lncRNA signature for predicting prognosis, immunotherapy responses and drug candidates in bladder cancer
BACKGROUND: Bladder cancer (BC) is one of the most common malignant diseases and the most common causes of cancer death worldwide. Immunotherapy has opened new avenues for precision treatment of bladder tumours, and immune checkpoint inhibitors (ICIs) have revolutionized the clinical treatment strat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111848/ https://www.ncbi.nlm.nih.gov/pubmed/37072750 http://dx.doi.org/10.1186/s12885-023-10828-z |
Sumario: | BACKGROUND: Bladder cancer (BC) is one of the most common malignant diseases and the most common causes of cancer death worldwide. Immunotherapy has opened new avenues for precision treatment of bladder tumours, and immune checkpoint inhibitors (ICIs) have revolutionized the clinical treatment strategy of bladder tumours. In addition, long non-coding RNA (lncRNA) plays an important role in regulating tumour development and immunotherapy efficacy. METHODS: We obtained genes with significant differences between anti-PD-L1 response and non-response from the Imvogor210 data set and combined with the bladder cancer expression data in the TCGA cohort to obtain immunotherapy-related lncRNA. Based on these lncRNAs, the prognostic risk model of bladder cancer was constructed and verified by GEO external data set. The characterization of immune cell infiltration and immunotherapy effects between high-risk and low-risk groups were then analysed. We predicted the ceRNA network and performed molecular docking of key target proteins. The functional experiments verified the function of SBF2-AS1. RESULTS: Three immunotherapy-related lncRNAs were identified as independent prognostic biomarkers for bladder cancer and a prognostic model of immunotherapy-related prognosis was constructed. Prognosis, immune cell infiltration, and immunotherapy efficacy were significantly different between high- and low-risk groups based on risk scores. Additionally, we established a ceRNA network of lncRNA(SBF2-AS1)-miRNA(has-miR-582-5p)-mRNA (HNRNPA2B1). Targeting the protein HNRNPA2B1 identified the top eight small molecule drugs with the highest affinity. CONCLUSION: We developed a prognostic risk score model based on immune-therapy-related lncRNA, which was subsequently determined to be significantly associated with immune cell infiltration and immunotherapy response. This study not only helps to promote our understanding of immunotherapy-related lncRNA in the prognosis of BC, but also provides new ideas for clinical immunotherapy and the development of novel therapeutic drugs for patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-10828-z. |
---|