Cargando…

It's complicated: the interplay of Kif1c mRNA localization in cell protrusions, assembly of protein binding partners on the KIF1C protein, and cell migration

Distinct subcellular localizations of mRNAs have been described across a wide variety of cell types. While common themes emerge for neuronal cells, functional roles of mRNA localization in space and time are much less understood in nonneuronal cells. Emerging areas of interest are cell models with p...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarfraz, Nadia, Braselmann, Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111868/
https://www.ncbi.nlm.nih.gov/pubmed/36889919
http://dx.doi.org/10.1101/gad.350538.123
Descripción
Sumario:Distinct subcellular localizations of mRNAs have been described across a wide variety of cell types. While common themes emerge for neuronal cells, functional roles of mRNA localization in space and time are much less understood in nonneuronal cells. Emerging areas of interest are cell models with protrusions, often linked with cell mobility in cancer systems. In this issue of Genes & Development, Norris and Mendell (pp. 191–203) systematically investigate a link between mRNA localization to cell protrusions in a mouse melanoma cell system and a mechanistic link to downstream consequences for cell mobility. The study first identifies a model mRNA of interest in an unbiased way that exhibits a set of phenotypes associated with cell mobility. The candidate mRNA that fulfills all requirements is Kif1c mRNA. Further systematic investigation links Kif1c mRNA localization to assembly of a protein–protein network on the KIF1C protein itself. What's clear is that this work will inspire a further mechanistic dissection of the Kif1c mRNA/KIF1C protein interplay in this important nonneuronal model cell system. More broadly, this work suggests that a broad set of model mRNAs should be investigated to understand mRNA dynamics and downstream functional consequences across a variety of cell models.