Cargando…
Machine Learning Enables Prediction of Halide Perovskites’ Optical Behavior with >90% Accuracy
[Image: see text] The composition-dependent degradation of hybrid organic–inorganic perovskites (HOIPs) due to environmental stressors still precludes their commercialization. It is very difficult to quantify their behavior upon exposure to each stressor by exclusively using trial-and-error methods...
Autores principales: | Srivastava, Meghna, Hering, Abigail R., An, Yu, Correa-Baena, Juan-Pablo, Leite, Marina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112389/ https://www.ncbi.nlm.nih.gov/pubmed/37090172 http://dx.doi.org/10.1021/acsenergylett.2c02555 |
Ejemplares similares
-
Halide Perovskites
por: Sum, Tze-Chien
Publicado: (2019) -
All-optical control of lead halide perovskite microlasers
por: Zhang, Nan, et al.
Publicado: (2019) -
Quantitative optical assessment of photonic and electronic properties in halide perovskite
por: Bercegol, Adrien, et al.
Publicado: (2019) -
Synergistic Role of
Water and Oxygen Leads to Degradation
in Formamidinium-Based Halide Perovskites
por: Hidalgo, Juanita, et al.
Publicado: (2023) -
Bandgap tuning strategy by cations and halide ions of lead halide perovskites learned from machine learning
por: Li, Yaoyao, et al.
Publicado: (2021)