Cargando…
Data-centric annotation analysis for plant disease detection: Strategy, consistency, and performance
Object detection models have become the current tool of choice for plant disease detection in precision agriculture. Most existing research improved the performance by ameliorating networks and optimizing the loss function. However, because of the vast influence of data annotation quality and the co...
Autores principales: | Dong, Jiuqing, Lee, Jaehwan, Fuentes, Alvaro, Xu, Mingle, Yoon, Sook, Lee, Mun Haeng, Park, Dong Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112485/ https://www.ncbi.nlm.nih.gov/pubmed/37082512 http://dx.doi.org/10.3389/fpls.2022.1037655 |
Ejemplares similares
-
An iterative noisy annotation correction model for robust plant disease detection
por: Dong, Jiuqing, et al.
Publicado: (2023) -
Style-Consistent Image Translation: A Novel Data Augmentation Paradigm to Improve Plant Disease Recognition
por: Xu, Mingle, et al.
Publicado: (2022) -
Improving Accuracy of Tomato Plant Disease Diagnosis Based on Deep Learning With Explicit Control of Hidden Classes
por: Fuentes, Alvaro, et al.
Publicado: (2021) -
A New Deep Learning-based Dynamic Paradigm Towards Open-World Plant Disease Detection
por: Dong, Jiuqing, et al.
Publicado: (2023) -
Embracing limited and imperfect training datasets: opportunities and challenges in plant disease recognition using deep learning
por: Xu, Mingle, et al.
Publicado: (2023)