Cargando…
RandomForestsGLS: An R package for Random Forests for dependent data
With the modern advances in geographical information systems, remote sensing technologies, and low-cost sensors, we are increasingly encountering datasets where we need to account for spatial or serial dependence. Dependent observations (y(1), y(2), …, y(n)) with covariates (x(1), ..., x(n)) can be...
Autores principales: | Saha, Arkajyoti, Basu, Sumanta, Datta, Abhirup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112657/ https://www.ncbi.nlm.nih.gov/pubmed/37077317 http://dx.doi.org/10.21105/joss.03780 |
Ejemplares similares
-
Random forest methodology for model-based recursive partitioning: the mobForest package for R
por: Garge, Nikhil R, et al.
Publicado: (2013) -
Random forests with R
por: Genuer, Robin, et al.
Publicado: (2020) -
Iterative random forests to discover predictive and stable high-order interactions
por: Basu, Sumanta, et al.
Publicado: (2018) -
Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes
por: Saha, Arkajyoti, et al.
Publicado: (2022) -
FOSTER—An R package for forest structure extrapolation
por: Queinnec, Martin, et al.
Publicado: (2021)