Cargando…

Cell wall fucosylation in Arabidopsis influences control of leaf water loss and alters stomatal development and mechanical properties

The Arabidopsis sensitive-to-freezing8 (sfr8) mutant exhibits reduced cell wall (CW) fucose levels and compromised freezing tolerance. To examine whether CW fucosylation also affects the response to desiccation, we tested the effect of leaf excision in sfr8 and the allelic mutant mur1-1. Leaf water...

Descripción completa

Detalles Bibliográficos
Autores principales: Panter, Paige E, Seifert, Jacob, Dale, Maeve, Pridgeon, Ashley J, Hulme, Rachel, Ramsay, Nathan, Contera, Sonia, Knight, Heather
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112686/
https://www.ncbi.nlm.nih.gov/pubmed/36715637
http://dx.doi.org/10.1093/jxb/erad039
Descripción
Sumario:The Arabidopsis sensitive-to-freezing8 (sfr8) mutant exhibits reduced cell wall (CW) fucose levels and compromised freezing tolerance. To examine whether CW fucosylation also affects the response to desiccation, we tested the effect of leaf excision in sfr8 and the allelic mutant mur1-1. Leaf water loss was strikingly higher than in the wild type in these, but not other, fucosylation mutants. We hypothesized that reduced fucosylation in guard cell (GC) walls might limit stomatal closure through altering mechanical properties. Multifrequency atomic force microscopy (AFM) measurements revealed a reduced elastic modulus (Eʹ), representing reduced stiffness, in sfr8 GC walls. Interestingly, however, we discovered a compensatory mechanism whereby a concomitant reduction in the storage modulus (Eʹʹ) maintained a wild-type viscoelastic time response (tau) in sfr8. Stomata in intact leaf discs of sfr8 responded normally to a closure stimulus, abscisic acid, suggesting that the time response may relate more to closure properties than stiffness does. sfr8 stomatal pore complexes were larger than those of the wild type, and GCs lacked a fully developed cuticular ledge, both potential contributors to the greater leaf water loss in sfr8. We present data that indicate that fucosylation-dependent dimerization of the CW pectic domain rhamnogalacturonan-II may be essential for normal cuticular ledge development and leaf water retention.