Cargando…
Compound Figure Separation of Biomedical Images: Mining Large Datasets for Self-supervised Learning
With the rapid development of self-supervised learning (e.g., contrastive learning), the importance of having large-scale images (even without annotations) for training a more generalizable AI model has been widely recognized in medical image analysis. However, collecting large-scale task-specific u...
Autores principales: | Yao, Tianyuan, Qu, Chang, Long, Jun, Liu, Quan, Deng, Ruining, Tian, Yuanhan, Xu, Jiachen, Jha, Aadarsh, Asad, Zuhayr, Bao, Shunxing, Zhao, Mengyang, Fogo, Agnes B., Landman, Bennett A., Yang, Haichun, Chang, Catie, Huo, Yuankai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112832/ https://www.ncbi.nlm.nih.gov/pubmed/37077404 |
Ejemplares similares
-
Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review
por: Cui, Can, et al.
Publicado: (2023) -
Reconstruction of respiratory variation signals from fMRI data
por: Salas, Jorge A., et al.
Publicado: (2020) -
Figure Text Extraction in Biomedical Literature
por: Kim, Daehyun, et al.
Publicado: (2011) -
Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension
por: Yu, Hong, et al.
Publicado: (2009) -
Figure and caption extraction from biomedical documents
por: Li, Pengyuan, et al.
Publicado: (2019)