Cargando…
K-RET: knowledgeable biomedical relation extraction system
MOTIVATION: Relation extraction (RE) is a crucial process to deal with the amount of text published daily, e.g. to find missing associations in a database. RE is a text mining task for which the state-of-the-art approaches use bidirectional encoders, namely, BERT. However, state-of-the-art performan...
Autores principales: | Sousa, Diana F, Couto, Francisco M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112952/ https://www.ncbi.nlm.nih.gov/pubmed/37018156 http://dx.doi.org/10.1093/bioinformatics/btad174 |
Ejemplares similares
-
BiOnt: Deep Learning Using Multiple Biomedical Ontologies for Relation Extraction
por: Sousa, Diana, et al.
Publicado: (2020) -
Improving accessibility and distinction between negative results in biomedical relation extraction
por: Sousa, Diana, et al.
Publicado: (2020) -
A hybrid approach toward biomedical relation extraction training corpora: combining distant supervision with crowdsourcing
por: Sousa, Diana, et al.
Publicado: (2020) -
Biomedical relation extraction with knowledge base–refined weak supervision
por: Yoon, Wonjin, et al.
Publicado: (2023) -
BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies
por: Lamurias, Andre, et al.
Publicado: (2019)