Cargando…
Natural language processing-driven state machines to extract social factors from unstructured clinical documentation
OBJECTIVE: This study sought to create natural language processing algorithms to extract the presence of social factors from clinical text in 3 areas: (1) housing, (2) financial, and (3) unemployment. For generalizability, finalized models were validated on data from a separate health system for gen...
Autores principales: | Allen, Katie S, Hood, Dan R, Cummins, Jonathan, Kasturi, Suranga, Mendonca, Eneida A, Vest, Joshua R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112959/ https://www.ncbi.nlm.nih.gov/pubmed/37081945 http://dx.doi.org/10.1093/jamiaopen/ooad024 |
Ejemplares similares
-
Identification of Prediabetes Discussions in Unstructured Clinical Documentation: Validation of a Natural Language Processing Algorithm
por: Schwartz, Jessica L, et al.
Publicado: (2022) -
Development and assessment of a natural language processing model to identify residential instability in electronic health records’ unstructured data: a comparison of 3 integrated healthcare delivery systems
por: Hatef, Elham, et al.
Publicado: (2022) -
Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts
por: Tsui, Fuchiang R, et al.
Publicado: (2021) -
Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing
por: Xie, Kevin, et al.
Publicado: (2022) -
Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study
por: Lu, Zhaohua, et al.
Publicado: (2021)